orthosteric ligands
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Austin Dean Dixon ◽  
Asuka Inoue ◽  
SCOTT Anthony ROBSON ◽  
Kelly Culhane ◽  
Jon Trinidad ◽  
...  

Using a discrete, intracellular 19F-NMR probe on Neurotensin receptor 1 (NTS1) transmembrane helix (TM) 6, we aim to understand how ligands and transducers modulate the receptors structural ensemble in solution. For apo NTS1, 19F-NMR spectra reveal an ensemble of at least three states (one inactive and two active-like) in equilibrium that exchange on the ms-s timescale. Dynamic NMR experiments reveal that these substates follow a linear three-site exchange process that is both thermodynamically and kinetically remodeled by orthosteric ligands. As previously observed in other GPCRs, the full agonist is insufficient to completely stabilize the active state. Receptor coupling to b-arrestin-1 or the C-terminal helix of Gaq, which comprises >60% of the GPCR/G protein interface surface area, abolishes the inactive substate. But whereas b-arrestin-1 selects for preexisting active-like substates, the Gaq peptide induces two new substates. Both transducer molecules promote substantial line-broadening of active states suggesting contributions from additional us-ms exchange processes. Together, our study suggests i) the NTS1 allosteric activation mechanism is alternatively dominated by induced fit or conformational selection depending on the coupled transducer, and ii) the available static structures do not represent the entire conformational ensemble observed in solution.


2021 ◽  
pp. 108886
Author(s):  
Francine C. Acher ◽  
Alexandre Cabayé ◽  
Floriane Eshak ◽  
Anne Goupil-Lamy ◽  
Jean-Philippe Pin

2021 ◽  
Author(s):  
Nan Wu ◽  
Léonie Strömich ◽  
Sophia N. Yaliraki

Allostery is a pervasive mechanism which regulates the activity of proteins in living systems through binding of a molecule at a distant site from the orthosteric site of the protein. The universality of allosteric regulation complemented by the benefits of highly specific, potentially non-toxic and protein activity modulating allosteric drugs makes uncovering allosteric sites on proteins invaluable for drug discovery. However, there are few computational methods to effectively predict them. Bond-to-bond propensity analysis, a recently developed method, has successfully predicted allosteric sites for a diverse group of proteins with only the knowledge of the orthosteric sites and the corresponding ligands in 19 of 20 cases. The method is based on an energy-weighted atomistic protein graph and allows for computationally highly efficient analysis in atomistic detail. We here extended the analysis onto 432 structures of 146 proteins from two existing benchmarking datasets for allosteric proteins: ASBench and CASBench. We further refined the metrics to account for the cumulative effect of residues with high propensities and the crucial residues in a given site with two additional measures. The allosteric site is recovered for 95/113 proteins (99/118 structures) from ASBench and 32/33 proteins (304/314 structures) from CASBench, with the only a priori knowledge being the orthosteric site residues. Knowing the orthosteric ligands of the protein, the allosteric site is identified for 32/33 proteins (308/314 structures) from CASBench.


2021 ◽  
Vol 118 (33) ◽  
pp. e2019126118
Author(s):  
Khuraijam Dhanachandra Singh ◽  
Zaira P. Jara ◽  
Terri Harford ◽  
Prasenjit Prasad Saha ◽  
Triveni R. Pardhi ◽  
...  

While orthosteric ligands of the angiotensin II (AngII) type 1 receptor (AT1R) are available for clinical and research applications, allosteric ligands are not known for this important G protein-coupled receptor (GPCR). Allosteric ligands are useful tools to modulate receptor pharmacology and subtype selectivity. Here, we report AT1R allosteric ligands for a potential application to block autoimmune antibodies. The epitope of autoantibodies for AT1R is outside the orthosteric pocket in the extracellular loop 2. A molecular dynamics simulation study of AT1R structure reveals the presence of a druggable allosteric pocket encompassing the autoantibody epitope. Small molecule binders were then identified for this pocket using structure-based high-throughput virtual screening. The top 18 hits obtained inhibited the binding of antibody to AT1R and modulated agonist-induced calcium response of AT1R. Two compounds out of 18 studied in detail exerted a negative allosteric modulator effect on the functions of the natural agonist AngII. They blocked antibody-enhanced calcium response and reactive oxygen species production in vascular smooth muscle cells as well as AngII-induced constriction of blood vessels, demonstrating their efficacy in vivo. Our study thus demonstrates the feasibility of discovering inhibitors of the disease-causing autoantibodies for GPCRs. Specifically, for AT1R, we anticipate development of more potent allosteric drug candidates for intervention in autoimmune maladies such as preeclampsia, bilateral adrenal hyperplasia, and the rejection of organ transplants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhaotong Cong ◽  
Li-Nan Chen ◽  
Honglei Ma ◽  
Qingtong Zhou ◽  
Xinyu Zou ◽  
...  

AbstractThe glucagon-like peptide-1 (GLP-1) receptor is a validated drug target for metabolic disorders. Ago-allosteric modulators are capable of acting both as agonists on their own and as efficacy enhancers of orthosteric ligands. However, the molecular details of ago-allosterism remain elusive. Here, we report three cryo-electron microscopy structures of GLP-1R bound to (i) compound 2 (an ago-allosteric modulator); (ii) compound 2 and GLP-1; and (iii) compound 2 and LY3502970 (a small molecule agonist), all in complex with heterotrimeric Gs. The structures reveal that compound 2 is covalently bonded to C347 at the cytoplasmic end of TM6 and triggers its outward movement in cooperation with the ECD whose N terminus penetrates into the GLP-1 binding site. This allows compound 2 to execute positive allosteric modulation through enhancement of both agonist binding and G protein coupling. Our findings offer insights into the structural basis of ago-allosterism at GLP-1R and may aid the design of better therapeutics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rabindra V. Shivnaraine ◽  
Brendan Kelly ◽  
Gwendolynne Elmslie ◽  
Xi-Ping Huang ◽  
Yue John Dong ◽  
...  

AbstractMany G protein-coupled receptors (GPCRs) are therapeutic targets, with most drugs acting at the orthosteric site. Some GPCRs also possess allosteric sites, which have become a focus of drug discovery. In the M2 muscarinic receptor, allosteric modulators regulate the binding and functional effects of orthosteric ligands through a mix of conformational changes, steric hindrance and electrostatic repulsion transmitted within and between the constituent protomers of an oligomer. Tacrine has been called an atypical modulator because it exhibits positive cooperativity, as revealed by Hill coefficients greater than 1 in its negative allosteric effect on binding and response. Radioligand binding and molecular dynamics simulations were used to probe the mechanism of that modulation in monomers and oligomers of wild-type and mutant M2 receptors. Tacrine is not atypical at monomers, which indicates that its atypical effects are a property of the receptor in its oligomeric state. These results illustrate that oligomerization of the M2 receptor has functional consequences.


2021 ◽  
Author(s):  
Soumajit Dutta ◽  
Balaji Selvam ◽  
Diwakar Shukla

The therapeutical potential of Cannabinoid receptors is not fully explored due to psychoactive side-effects and lack of selectivity associated with the orthosteric ligands. Allosteric modulators have the potential to become selective therapeutics for cannabi- noid receptors. Biochemical experiments have shown the effects of the allosteric Na+ binding on cannabinoid receptor activity. However, the Na+ coordination site, and binding pathway are still unknown. Here, we perform molecular dynamic simulations to explore Na+ binding in the cannabinoid receptors, CB1 and CB2. Simulations reveal that Na+ binds to the primary binding site from different extracellular sites for CB1 and CB2. A distinct secondary Na+ coordinate site is identified that is not present in CB2. Furthermore, simulations also show that intracellular Na+ could bind to the Na+ binding site in CB1. Constructed Markov state models show that the standard free energy of Na+ binding is similar to the previously calculated free energy for other class A GPCRs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elisabetta Barresi ◽  
Claudia Martini ◽  
Federico Da Settimo ◽  
Giovanni Greco ◽  
Sabrina Taliani ◽  
...  

The development of GPCR (G-coupled protein receptor) allosteric modulators has attracted increasing interest in the last decades. The use of allosteric modulators in therapy offers several advantages with respect to orthosteric ones, as they can fine-tune the tissue responses to the endogenous agonist. Since the discovery of the first A1 adenosine receptor (AR) allosteric modulator in 1990, several efforts have been made to develop more potent molecules as well as allosteric modulators for all adenosine receptor subtypes. There are four subtypes of AR: A1, A2A, A2B, and A3. Positive allosteric modulators of the A1 AR have been proposed for the cure of pain. A3 positive allosteric modulators are thought to be beneficial during inflammatory processes. More recently, A2A and A2B AR allosteric modulators have also been disclosed. The A2B AR displays the lowest affinity for its endogenous ligand adenosine and is mainly activated as a consequence of tissue damage. The A2B AR activation has been found to play a crucial role in chronic obstructive pulmonary disease, in the protection of the heart from ischemic injury, and in the process of bone formation. In this context, allosteric modulators of the A2B AR may represent pharmacological tools useful to develop new therapeutic agents. Herein, we provide an up-to-date highlight of the recent findings and future perspectives in the field of orthosteric and allosteric A2B AR ligands. Furthermore, we compare the use of orthosteric ligands with positive and negative allosteric modulators for the management of different pathological conditions.


2021 ◽  
Vol 22 (4) ◽  
pp. 1763
Author(s):  
Manuel Grundmann ◽  
Eckhard Bender ◽  
Jens Schamberger ◽  
Frank Eitner

The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.


2020 ◽  
Vol 21 (17) ◽  
pp. 5961
Author(s):  
Angelica Mazzolari ◽  
Silvia Gervasoni ◽  
Alessandro Pedretti ◽  
Laura Fumagalli ◽  
Rosanna Matucci ◽  
...  

Structure-based virtual screening is a truly productive repurposing approach provided that reliable target structures are available. Recent progresses in the structural resolution of the G-Protein Coupled Receptors (GPCRs) render these targets amenable for structure-based repurposing studies. Hence, the present study describes structure-based virtual screening campaigns with a view to repurposing known drugs as potential allosteric (and/or orthosteric) ligands for the hM2 muscarinic subtype which was indeed resolved in complex with an allosteric modulator thus allowing a precise identification of this binding cavity. First, a docking protocol was developed and optimized based on binding space concept and enrichment factor optimization algorithm (EFO) consensus approach by using a purposely collected database including known allosteric modulators. The so-developed consensus models were then utilized to virtually screen the DrugBank database. Based on the computational results, six promising molecules were selected and experimentally tested and four of them revealed interesting affinity data; in particular, dequalinium showed a very impressive allosteric modulation for hM2. Based on these results, a second campaign was focused on bis-cationic derivatives and allowed the identification of other two relevant hM2 ligands. Overall, the study enhances the understanding of the factors governing the hM2 allosteric modulation emphasizing the key role of ligand flexibility as well as of arrangement and delocalization of the positively charged moieties.


Sign in / Sign up

Export Citation Format

Share Document