scholarly journals Weak impact of microorganisms on Ca, Mg-bearing silicate weathering

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Oleg S. Pokrovsky ◽  
Liudmila S. Shirokova ◽  
Svetlana A. Zabelina ◽  
Guntram Jordan ◽  
Pascale Bénézeth

AbstractAssessment of the microbial impact on mineral dissolution is crucial for a predictive understanding of basic (Ca, Mg bearing) silicate weathering and the associated CO2 consumption, bioerosion, and CO2 storage in basaltic rocks. However, there are controversies about the mechanism of microbial effect, which ranges from inhibiting via nil to accelerating. Here we studied diopside interaction with the heterotrophic bacterium Pseudomonas reactants and the soil fungus Chaetomium brasiliense using a combination of mixed-flow and batch reactors and in situ (AFM) and ex situ (SEM) microscopy. The results provide new nano-level insights into the degree to which microorganisms modify silicate dissolution. Taking into account negligible effects of organic ligands on diopside dissolution as reported earlier, we conclude that the microbial effect on Ca-Mg silicates is weak and the acceleration of dissolution of “basic” silicate rocks in the presence of soil biota is solely due to pH decrease in porewaters.

2015 ◽  
Vol 81 (15) ◽  
pp. 4955-4964 ◽  
Author(s):  
Andrea Ceci ◽  
Martin Kierans ◽  
Stephen Hillier ◽  
Anna Maria Persiani ◽  
Geoffrey Michael Gadd

ABSTRACTFungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb5(AsO4)3Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization forin situandex situsequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb5(PO4)3Cl] and vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungusAspergillus nigerwas able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery.


2018 ◽  
Vol 59 (77) ◽  
pp. 159-170 ◽  
Author(s):  
Tanuj Shukla ◽  
Shipika Sundriyal ◽  
Lukasz Stachnik ◽  
Manish Mehta

ABSTRACTThis paper presents new insights into the global carbon cycle related to CO2 consumption from chemical denudation in heavily glacierised Himalayan catchments. Data from previous studies of solute concentrations from glacierised catchments were reprocessed to determine the regional scale of CO2 consumption and solute hydrolysis. The results show that ~90% of the SO42− is derived from crustal sulphide oxidation and ~10% from aerosols and sea salts. However, HCO3− flux calculation estimates contribution from sulphide oxidation to carbonate dissolution (SO-CD) (~21%), similar to the contributions from silicate dissolution and simple hydrolysis (~21 and ~20%, respectively). Furthermore, the atmospheric CO2 consumption estimations suggests 10.6 × 104 mole km−2 a−1 (19%) through silicate weathering, 15.7 × 104 mole km−2 a−1 (28%) through simple hydrolysis, 9.6 × 104 mole km−2 a−1 (17%) through SO-CD reaction and 5.9 × 104 mole km−2 a−1 (11%) through carbonate carbonation reaction. Our solute provenance calculations clearly indicate that HCO3− production and CO2 consumption via silicate weathering reactions is balanced by the simple hydrolysis and coupled SO-CD process. This shows a counter mechanism operating in subglacial environments of the Himalaya as a source of CO2 to runoff rather than a sink.


2021 ◽  
Author(s):  
Friedhelm von Blanckenburg ◽  
Jeremy K. Caves-Rugenstein ◽  
Daniel E. Ibarra

<p>Long-term cooling, pCO<sub>2</sub> decline, and the establishment of permanent, polar ice sheets in the Neogene<sup></sup>has frequently been attributed to increased uplift and erosion of mountains and consequent increases in silicate weathering, which removes atmospheric CO<sub>2</sub>. However, an increasing weathering flux is incompatible with a balanced atmospheric CO<sub>2</sub>budget [1]. For example, a weathering increase scaled to frequently invoked erosional increase [2] would have removed nearly all carbon from the atmosphere. Further, the marine <sup>10</sup>Be/<sup>9</sup>Be proxy indicates constant silicate weathering fluxes over the past 10 Ma [3].</p><p>Rather, as volcanic CO<sub>2</sub> emissions have been largely constant yet atmospheric CO<sub>2</sub> decreased, as indicated by the marine <sup>11</sup>B/<sup>10</sup>B proxy, an increase in “land surface reactivity” has likely driven global cooling [4]. Land surface reactivity quantifies the likelihood of weathering zone material to react with carbon derived from atmospheric CO<sub>2</sub> and represents the degree of coupling between weathering and climate. That surface reactivity has increased during the Neogene is confirmed by the stable <sup>7</sup>Li/<sup>6</sup>Li seawater proxy, which increases during the Neogene. The question we now need to address is thus: what has caused the increase in land surface reactivity? What is needed is an increased availability of Ca and Mg-rich primary minerals in the global critical zone. This could have come about by 1) an increased exposure of mafic volcanic rock; 2) supply of fresh glacial debris; 3) widespread rejuvenation of the continental land surface by faulting; 4) more efficient mineral dissolution by biota; or 5) an increase in erosion rate with or without mountain uplift. Only explanation 1) can be discounted as this hypothesis fails to satisfy the marine Sr and Os radiogenic isotope records. Explanations 2 – 5 remain. In all of these the role of erosion is to remove weathered material. Indeed, parsimonious geochemical models are roughly compatible with a doubling in global erosional mass flux since 10 Ma [1].</p><p>(1) Caves Rugenstein, J.K., D.E. Ibarra, and F. von Blanckenburg, Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature, 2019.</p><p>(2) Molnar, P., Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Ann. Rev. Earth Planet. Sc., 2004.</p><p>(3) Willenbring, J.K. and F. von Blanckenburg, Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature, 2010.</p><p>(4) Kump, L.R. and M.A. Arthur, Global chemical erosion during the Cenozoic: Weatherability balances the budgets, in Tectonic Uplift and Climate Change. 1997.</p>


2008 ◽  
Vol 58 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Yalda Mokhayeri ◽  
Rumana Riffat ◽  
Imre Takacs ◽  
Peter Dold ◽  
Charles Bott ◽  
...  

Wastewater treatment plants in the Chesapeake Bay region are becoming more interested in external carbon sources for denitrification. This is in response to the recent regulations to remediate the Chesapeake Bay, which will limit effluent total nitrogen to near 3 mg/L for plants, thus requiring near complete elimination of inorganic nitrogen species. Since sufficient internal carbon is usually not available for complete denitrification, external carbon is needed to supplement internal sources. Of particular interest is the use of an alternate external carbon source to replace the least expensive source methanol. This study focuses on three commonly available external carbon sources: methanol, ethanol and acetate. The aim of this study was to obtain the specific denitrification rate (SDNR) of the substrates under several conditions. Sequencing batch reactors (SBRs) were set up to first grow biomass to the specified substrate while in situ SDNRs were conducted concurrently. Once the biomass was grown with the corresponding substrate, a series of ex situ SDNRs were performed using various biomass/substrate combinations to evaluate response to substrate combinations at 13°C. Results from this study indicate that the SDNRs for biomass grown on methanol, ethanol and acetate were 9.2 mg NO3-N/g VSS/hr, 30.4 mg NO3-N/gVSS/hr and 31.7 mg NO3-N/g VSS/hr, respectively, suggesting that acetate and ethanol were equally effective external carbon sources followed by much lower SDNR using methanol. Ethanol could be used with methanol biomass with similar rates as that of methanol. Additionally, methanol was rapidly acclimated to ethanol grown biomass suggesting that the two substrates could be interchanged to grow respective populations with a minimum lag period.


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
M. E. Twigg ◽  
B. R. Bennett ◽  
J. R. Waterman ◽  
J. L. Davis ◽  
B. V. Shanabrook ◽  
...  

Recently, the GaSb/InAs superlattice system has received renewed attention. The interest stems from a model demonstrating that short period Ga1-xInxSb/InAs superlattices will have both a band gap less than 100 meV and high optical absorption coefficients, principal requirements for infrared detector applications. Because this superlattice system contains two species of cations and anions, it is possible to prepare either InSb-like or GaAs-like interfaces. As such, the system presents a unique opportunity to examine interfacial properties.We used molecular beam epitaxy (MBE) to prepare an extensive set of GaSb/InAs superlattices grown on an GaSb buffer, which, in turn had been grown on a (100) GaAs substrate. Through appropriate shutter sequences, the interfaces were directed to assume either an InSb-like or GaAs-like character. These superlattices were then studied with a variety of ex-situ probes such as x-ray diffraction and Raman spectroscopy. These probes confirmed that, indeed, predominantly InSb-like and GaAs-like interfaces had been achieved.


Sign in / Sign up

Export Citation Format

Share Document