scholarly journals Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuguang Zhang ◽  
Wenku Shi ◽  
Zhiyong Chen

Smart structures such as damping adjustable dampers made of magnetorheological (MR) fluid can be used to attenuate vibration transmission in vehicle seat suspension. The main research content of this paper is the nonlinearity and hysteresis characteristics of the MR damper. A hysteretic model considering both excitation characteristics and input current is proposed to fit the damper force-velocity curve for the MR damper under different conditions. Multifactor sensitivity analysis based on the neural network method is used to obtain importance parameters of the hyperbolic tangent model. In order to demonstrate the fitting precision of the different models, the shuffled frog-leaping algorithm (SFLA) is employed to identify the parameters of MR damper models. The research results indicate that the modified model can not only describe the nonlinear hysteretic behavior of the MR damper more accurately in fixed conditions, compared with the original model, but also meet the fitting precision under a wide range of magnitudes of control current and excitation conditions (frequency and amplitude). The method of parameter sensitivity analysis and identification can also be used to modify other nonlinear dynamic models.

2021 ◽  
Vol 13 (3) ◽  
pp. 1589
Author(s):  
Juan Sánchez-Fernández ◽  
Luis-Alberto Casado-Aranda ◽  
Ana-Belén Bastidas-Manzano

The limitations of self-report techniques (i.e., questionnaires or surveys) in measuring consumer response to advertising stimuli have necessitated more objective and accurate tools from the fields of neuroscience and psychology for the study of consumer behavior, resulting in the creation of consumer neuroscience. This recent marketing sub-field stems from a wide range of disciplines and applies multiple types of techniques to diverse advertising subdomains (e.g., advertising constructs, media elements, or prediction strategies). Due to its complex nature and continuous growth, this area of research calls for a clear understanding of its evolution, current scope, and potential domains in the field of advertising. Thus, this current research is among the first to apply a bibliometric approach to clarify the main research streams analyzing advertising persuasion using neuroimaging. Particularly, this paper combines a comprehensive review with performance analysis tools of 203 papers published between 1986 and 2019 in outlets indexed by the ISI Web of Science database. Our findings describe the research tools, journals, and themes that are worth considering in future research. The current study also provides an agenda for future research and therefore constitutes a starting point for advertising academics and professionals intending to use neuroimaging techniques.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3153
Author(s):  
João Franco Machado ◽  
João D. G. Correia ◽  
Tânia S. Morais

Cisplatin and derivatives are highly effective in the treatment of a wide range of cancer types; however, these metallodrugs display low selectivity, leading to severe side effects. Additionally, their administration often results in the development of chemoresistance, which ultimately results in therapeutic failure. This scenario triggered the study of other transition metals with innovative pharmacological profiles as alternatives to platinum, ruthenium- (e.g., KP1339 and NAMI-A) and gold-based (e.g., Auranofin) complexes being among the most advanced in terms of clinical evaluation. Concerning the importance of improving the in vivo selectivity of metal complexes and the current relevance of ruthenium and gold metals, this review article aims to survey the main research efforts made in the past few years toward the design and biological evaluation of target-specific ruthenium and gold complexes. Herein, we give an overview of the inorganic and organometallic molecules conjugated to different biomolecules for targeting membrane proteins, namely cell adhesion molecules, G-protein coupled receptors, and growth factor receptors. Complexes that recognize the progesterone receptors or other targets involved in metabolic pathways such as glucose transporters are discussed as well. Finally, we describe some complexes aimed at recognizing cell organelles or compartments, mitochondria being the most explored. The few complexes addressing targeted gene therapy are also presented and discussed.


Author(s):  
S. Jin ◽  
L. Deng ◽  
J. Yang ◽  
S. Sun ◽  
D. Ning ◽  
...  

This paper presents a smart passive MR damper with fast-responsive characteristics for impact mitigation. The hybrid powering system of the MR damper, composed of batteries and self-powering component, enables the damping of the MR damper to be negatively proportional to the impact velocity, which is called rate-dependent softening effect. This effect can keep the damping force as the maximum allowable constant force under different impact speed and thus improve the efficiency of the shock energy mitigation. The structure, prototype and working principle of the new MR damper are presented firstly. Then a vibration platform was used to characterize the dynamic property and the self-powering capability of the new MR damper. The impact mitigation performance of the new MR damper was evaluated using a drop hammer and compared with a passive damper. The comparison results demonstrate that the damping force generated by the new MR damper can be constant over a large range of impact velocity while the passive damper cannot. The special characteristics of the new MR damper can improve its energy dissipation efficiency over a wide range of impact speed and keep occupants and mechanical structures safe.


Author(s):  
Chenyu Zhou ◽  
Liangyao Yu ◽  
Yong Li ◽  
Jian Song

Accurate estimation of sideslip angle is essential for vehicle stability control. For commercial vehicles, the estimation of sideslip angle is challenging due to severe load transfer and tire nonlinearity. This paper presents a robust sideslip angle observer of commercial vehicles based on identification of tire cornering stiffness. Since tire cornering stiffness of commercial vehicles is greatly affected by tire force and road adhesion coefficient, it cannot be treated as a constant. To estimate the cornering stiffness in real time, the neural network model constructed by Levenberg-Marquardt backpropagation (LMBP) algorithm is employed. LMBP is a fast convergent supervised learning algorithm, which combines the steepest descent method and gauss-newton method, and is widely used in system parameter estimation. LMBP does not rely on the mathematical model of the actual system when building the neural network. Therefore, when the mathematical model is difficult to establish, LMBP can play a very good role. Considering the complexity of tire modeling, this study adopted LMBP algorithm to estimate tire cornering stiffness, which have simplified the tire model and improved the estimation accuracy. Combined with neural network, A time-varying Kalman filter (TVKF) is designed to observe the sideslip angle of commercial vehicles. To validate the feasibility of the proposed estimation algorithm, multiple driving maneuvers under different road surface friction have been carried out. The test results show that the proposed method has better accuracy than the existing algorithm, and it’s robust over a wide range of driving conditions.


2018 ◽  
Vol 28 (09) ◽  
pp. 1850113 ◽  
Author(s):  
Maysam Fathizadeh ◽  
Sajjad Taghvaei ◽  
Hossein Mohammadi

Human walking is an action with low energy consumption. Passive walking models (PWMs) can present this intrinsic characteristic. Simplicity in the biped helps to decrease the energy loss of the system. On the other hand, sufficient parts should be considered to increase the similarity of the model’s behavior to the original action. In this paper, the dynamic model for passive walking biped with unidirectional fixed flat soles of the feet is presented, which consists of two inverted pendulums with L-shaped bodies. This model can capture the effects of sole foot in walking. By adding the sole foot, the number of phases of a gait increases to two. The nonlinear dynamic models for each phase and the transition rules are determined, and the stable and unstable periodic motions are calculated. The stability situations are obtained for different conditions of walking. Finally, the bifurcation diagrams are presented for studying the effects of the sole foot. Poincaré section, Lyapunov exponents, and bifurcation diagrams are used to analyze stability and chaotic behavior. Simulation results indicate that the sole foot has such a significant impression on the dynamic behavior of the system that it should be considered in the simple PWMs.


2018 ◽  
Vol 2 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Fa-An Chao ◽  
R. Andrew Byrd

Structural biology often focuses primarily on three-dimensional structures of biological macromolecules, deposited in the Protein Data Bank (PDB). This resource is a remarkable entity for the worldwide scientific and medical communities, as well as the general public, as it is a growing translation into three-dimensional space of the vast information in genomic databases, e.g. GENBANK. There is, however, significantly more to understanding biological function than the three-dimensional co-ordinate space for ground-state structures of biomolecules. The vast array of biomolecules experiences natural dynamics, interconversion between multiple conformational states, and molecular recognition and allosteric events that play out on timescales ranging from picoseconds to seconds. This wide range of timescales demands ingenious and sophisticated experimental tools to sample and interpret these motions, thus enabling clearer insights into functional annotation of the PDB. NMR spectroscopy is unique in its ability to sample this range of timescales at atomic resolution and in physiologically relevant conditions using spin relaxation methods. The field is constantly expanding to provide new creative experiments, to yield more detailed coverage of timescales, and to broaden the power of interpretation and analysis methods. This review highlights the current state of the methodology and examines the extension of analysis tools for more complex experiments and dynamic models. The future for understanding protein dynamics is bright, and these extended tools bring greater compatibility with developments in computational molecular dynamics, all of which will further our understanding of biological molecular functions. These facets place NMR as a key component in integrated structural biology.


2021 ◽  
Vol 1 (2) ◽  
pp. 27-33
Author(s):  
M.V. Lyashenko ◽  
◽  
V.V. Shekhovtsov ◽  
P.V. Potapov ◽  
A.I. Iskaliyev ◽  
...  

The pneumatic seat suspension is one of the most important, and in some situations, one of the key components of the vibration protection system for the human operator of the vehicle. At the present stage of scientific and technical activities of most developers, great emphasis is placed on controlled seat suspension systems, as the most promising systems. This article analyzes the methods of controlling the elastic damping characteristics of the air suspension of a vehicle seat. Ten dif-ferent and fairly well-known methods of changing the shape and parameters of elastic damping characteristics due to electro-pneumatic valves, throttles, motors, additional cavities, auxiliary mechanisms and other actuators were considered, the advantages, application limits and disad-vantages of each method were analyzed. Based on the results of the performed analytical procedure, as well as the recommendations known in the scientific and technical literature on improving the vibration-protective properties of suspension systems, the authors proposed and developed a new method for controlling the elastic-damping characteristic, which is implemented in the proposed technical solution for the air suspension of a vehicle seat. The method differs in the thing that it im-plements a cyclic controlled exchange of the working fluid between the cavities of the pneumatic elastic element and the additional volume of the receiver on the compression and rebound strokes, forming an almost symmetric elastic damping characteristic, and partial recuperation of vibrational energy by a pneumatic drive, presented in the form of a rotary type pneumatic motor. In addition, the method does not require an unregulated hydraulic shock absorber, while still having the ad-vantage of improved vibration-proof properties of the air suspension of a vehicle seat over a wide range of operating influences.


Sign in / Sign up

Export Citation Format

Share Document