transcriptional adaptation
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 3)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1010000
Author(s):  
Hajime Okada ◽  
Yumiko Saga

Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are paralogs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent gene.


Phenomics ◽  
2021 ◽  
Author(s):  
Andrea Rossi ◽  
Zacharias Kontarakis

AbstractUnderstanding the way genes work amongst individuals and across generations to shape form and function is a common theme for many genetic studies. The recent advances in genetics, genome engineering and DNA sequencing reinforced the notion that genes are not the only players that determine a phenotype. Due to physiological or pathological fluctuations in gene expression, even genetically identical cells can behave and manifest different phenotypes under the same conditions. Here, we discuss mechanisms that can influence or even disrupt the axis between genotype and phenotype; the role of modifier genes, the general concept of genetic redundancy, genetic compensation, the recently described transcriptional adaptation, environmental stressors, and phenotypic plasticity. We furthermore highlight the usage of induced pluripotent stem cells (iPSCs), the generation of isogenic lines through genome engineering, and sequencing technologies can help extract new genetic and epigenetic mechanisms from what is hitherto considered ‘noise’.


2021 ◽  
Author(s):  
Luis Flores Horgue ◽  
Alexis Assens ◽  
Leon Fodoulian ◽  
Leonardo Marconi Archinto ◽  
Joel Tuberosa ◽  
...  

Sensory adaptation is critical to extract information from a changing world. Taking advantage of the extensive parallel coding lines present in the olfactory system, we explored the potential variations of neuronal identities before and after olfactory experience. We found that at rest, the transcriptomic profiles of olfactory sensory neuron populations are already highly divergent, specific to the olfactory receptor they express, and are surprisingly associated with the sequence of these latter. These divergent profiles further evolve in response to the environment, as odorant exposure leads to massive reprogramming via the modulation of transcription. Adenylyl cyclase 3, but not other main elements of the olfactory transduction cascade, plays a critical role in this activity-induced transcriptional adaptation. These findings highlight a broad range of sensory neuron identities that are present at rest and that adapt to the experience of the individual, thus providing a novel layer of complexity to sensory coding.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi213-vi213
Author(s):  
Kevin Joseph ◽  
Lea Vollmer ◽  
Vidyha Ravi ◽  
Jürgen Beck ◽  
Ulrich Hofmann ◽  
...  

Abstract OBJECTIVE Owing to recent advances in understanding of the active functional states exhibited within glioblastoma (GBM), intra-tumoral cellular signaling has moved into focus of neuro-oncology. In this study, we aim to explore the diversity of transcellular signaling and investigate correlations between transcriptional dynamics and functional signaling. METHODS Electrophysiological characterization of GBM was carried out using planar microelectrodes and Ca2+ imaging, in both 2D cell culture as well as in our novel human cortical GBM model. Exposure to physiologically relevant conditions present within the tumor was carried out to identify specific signaling cells of interest and capture the signaling diversity in response to environmental conditions. Transcriptional dynamics and plasticity were examined by means of scRNA-sequencing with CRISPR based perturbation, spatial transcriptomics and deep long-read RNA-sequencing. RESULTS Electrophysiological profiles of multiple primary GBM cell lines revealed characteristics of scale-free networks (R2=0.875), confirmed in both 2D culture as well as a human neocortical GBM model. When GBM was cultured in a “in-vivo” like environment, basal activity was significantly higher (50%, p=0.01). Cellular signaling was directly correlated to changes in the environment, like hypoxia or glutamatergic activation, and total inhibition of electrical signaling required the usage of synaptic inhibitors. Using single-cell RNA sequencing and proteomics, several synaptogenesis related genes were identified to play a crucial role in the lineage states present in GBM. CRISPR based perturbation of these genes resulted in alterations in cellular morphology and decreased cellular connectivity (p< 0.01), with loss of scale free features (R2=0.35), and transcriptomic loss of developmental lineages (FDR< 0.01), leading to significant inhibition of GBM stress response. CONCLUSION Our findings highlight the role of electrical signaling in glioblastoma. Cellular stressors induce intercellular signaling, leading to transcriptional adaptation suggesting that there exists a highly complex and powerful mechanism for dynamic transcriptional state adaptation.


2021 ◽  
Vol 22 (16) ◽  
pp. 8451
Author(s):  
Christian Vahlensieck ◽  
Cora S. Thiel ◽  
Jan Adelmann ◽  
Beatrice A. Lauber ◽  
Jennifer Polzer ◽  
...  

Cellular responses to micro- and hypergravity are rapid and complex and appear within the first few seconds of exposure. Transcriptomic analyses are a valuable tool to analyze these genome-wide cellular alterations. For a better understanding of the cellular dynamics upon altered gravity exposure, it is important to compare different time points. However, since most of the experiments are designed as endpoint measurements, the combination of cross-experiment meta-studies is inevitable. Microarray and RNA-Seq analyses are two of the main methods to study transcriptomics. In the field of altered gravity research, both methods are frequently used. However, the generation of these data sets is difficult and time-consuming and therefore the number of available data sets in this research field is limited. In this study, we investigated the comparability of microarray and RNA-Seq data and applied the results to a comparison of the transcriptomics dynamics between the hypergravity conditions during two real flight platforms and a centrifuge experiment to identify temporal adaptation processes. We performed a comparative study on an Affymetrix HTA2.0 microarray and a paired-end RNA-Seq data set originating from the same Jurkat T cell RNA samples from a short-term hypergravity experiment. The overall agreeability was high, with better sensitivity of the RNA-Seq analysis. The microarray data set showed weaknesses on the level of single upregulated genes, likely due to its normalization approach. On an aggregated level of biotypes, chromosomal distribution, and gene sets, both technologies performed equally well. The microarray showed better performance on the detection of altered gravity-related splicing events. We found that all initially altered transcripts fully adapted after 15 min to hypergravity and concluded that the altered gene expression response to hypergravity is transient and fully reversible. Based on the combined multiple-platform meta-analysis, we could demonstrate rapid transcriptional adaptation to hypergravity, the differential expression of the ATPase subunits ATP6V1A and ATP6V1D, and the cluster of differentiation (CD) molecules CD1E, CD2AP, CD46, CD47, CD53, CD69, CD96, CD164, and CD226 in hypergravity. We could experimentally demonstrate that it is possible to develop methodological evidence for the meta-analysis of individual data.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Gabrielius Jakutis ◽  
Didier Y.R. Stainier

Genetic manipulations with a robust and predictable outcome are critical to investigate gene function, as well as for therapeutic genome engineering. For many years, knockdown approaches and reagents including RNA interference and antisense oligonucleotides dominated functional studies; however, with the advent of precise genome editing technologies, CRISPR-based knockout systems have become the state-of-the-art tools for such studies. These technologies have helped decipher the role of thousands of genes in development and disease. Their use has also revealed how limited our understanding of genotype–phenotype relationships is. The recent discovery that certain mutations can trigger the transcriptional modulation of other genes, a phenomenon called transcriptional adaptation, has provided an additional explanation for the contradicting phenotypes observed in knockdown versus knockout models and increased awareness about the use of each of these approaches. In this review, we first cover the strengths and limitations of different gene perturbation strategies. Then we highlight the diverse ways in which the genotype–phenotype relationship can be discordant between these different strategies. Finally, we review the genetic robustness mechanisms that can lead to such discrepancies, paying special attention to the recently discovered phenomenon of transcriptional adaptation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Hajime Okada ◽  
Yumiko Saga

Organisms are inherently equipped with buffering systems against genetic perturbations. Upregulation of homologous genes responding to gene loss, termed genetic compensation, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are homologs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent homolog.


2021 ◽  
Vol 4 (7) ◽  
pp. e202000961
Author(s):  
Lucy Lancaster ◽  
Harshil Patel ◽  
Gavin Kelly ◽  
Frank Uhlmann

Nuclear organisation shapes gene regulation; however, the principles by which three-dimensional genome architecture influences gene transcription are incompletely understood. Condensin is a key architectural chromatin constituent, best known for its role in mitotic chromosome condensation. Yet at least a subset of condensin is bound to DNA throughout the cell cycle. Studies in various organisms have reported roles for condensin in transcriptional regulation, but no unifying mechanism has emerged. Here, we use rapid conditional condensin depletion in the budding yeast Saccharomyces cerevisiae to study its role in transcriptional regulation. We observe a large number of small gene expression changes, enriched at genes located close to condensin-binding sites, consistent with a possible local effect of condensin on gene expression. Furthermore, nascent RNA sequencing reveals that transcriptional down-regulation in response to environmental stimuli, in particular to heat shock, is subdued without condensin. Our results underscore the multitude by which an architectural chromosome constituent can affect gene regulation and suggest that condensin facilitates transcriptional reprogramming as part of adaptation to environmental changes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tahliyah S. Mims ◽  
Qusai Al Abdallah ◽  
Justin D. Stewart ◽  
Sydney P. Watts ◽  
Catrina T. White ◽  
...  

AbstractAs an active interface between the host and their diet, the gut microbiota influences host metabolic adaptation; however, the contributions of fungi have been overlooked. Here, we investigate whether variations in gut mycobiome abundance and composition correlate with key features of host metabolism. We obtained animals from four commercial sources in parallel to test if differing starting mycobiomes can shape host adaptation in response to processed diets. We show that the gut mycobiome of healthy mice is shaped by the environment, including diet, and significantly correlates with metabolic outcomes. We demonstrate that exposure to processed diet leads to persistent differences in fungal communities that significantly associate with differential deposition of body mass in male mice compared to mice fed standardized diet. Fat deposition in the liver, transcriptional adaptation of metabolically active tissues and serum metabolic biomarker levels are linked with alterations in fungal community diversity and composition. Specifically, variation in fungi from the genera Thermomyces and Saccharomyces most strongly associate with metabolic disturbance and weight gain. These data suggest that host–microbe metabolic interactions may be influenced by variability in the mycobiome. This work highlights the potential significance of the gut mycobiome in health and has implications for human and experimental metabolic studies.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maurizio Fazio ◽  
Ellen van Rooijen ◽  
Michelle Dang ◽  
Glenn van de Hoek ◽  
Julien Ablain ◽  
...  

Recent genomic and scRNA-seq analyses of melanoma demonstrated a lack of recurrent genetic drivers of metastasis, while identifying common transcriptional states correlating with invasion or drug resistance. To test whether transcriptional adaptation can drive melanoma progression, we made use of a zebrafish mitfa:BRAFV600E;tp53-/- model, in which malignant progression is characterized by minimal genetic evolution. We undertook an overexpression-screen of 80 epigenetic/transcriptional regulators and found neural crest-mesenchyme developmental regulator SATB2 to accelerate aggressive melanoma development. Its overexpression induces invadopodia formation and invasion in zebrafish tumors and human melanoma cell lines. SATB2 binds and activates neural crest-regulators, including pdgfab and snai2. The transcriptional program induced by SATB2 overlaps with known MITFlowAXLhigh and AQP1+NGFR1high drug-resistant states and functionally drives enhanced tumor propagation and resistance to Vemurafenib in vivo. In summary, we show that melanoma transcriptional rewiring by SATB2 to a neural crest mesenchyme-like program can drive invasion and drug resistance in autochthonous tumors.


Sign in / Sign up

Export Citation Format

Share Document