scholarly journals The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tahliyah S. Mims ◽  
Qusai Al Abdallah ◽  
Justin D. Stewart ◽  
Sydney P. Watts ◽  
Catrina T. White ◽  
...  

AbstractAs an active interface between the host and their diet, the gut microbiota influences host metabolic adaptation; however, the contributions of fungi have been overlooked. Here, we investigate whether variations in gut mycobiome abundance and composition correlate with key features of host metabolism. We obtained animals from four commercial sources in parallel to test if differing starting mycobiomes can shape host adaptation in response to processed diets. We show that the gut mycobiome of healthy mice is shaped by the environment, including diet, and significantly correlates with metabolic outcomes. We demonstrate that exposure to processed diet leads to persistent differences in fungal communities that significantly associate with differential deposition of body mass in male mice compared to mice fed standardized diet. Fat deposition in the liver, transcriptional adaptation of metabolically active tissues and serum metabolic biomarker levels are linked with alterations in fungal community diversity and composition. Specifically, variation in fungi from the genera Thermomyces and Saccharomyces most strongly associate with metabolic disturbance and weight gain. These data suggest that host–microbe metabolic interactions may be influenced by variability in the mycobiome. This work highlights the potential significance of the gut mycobiome in health and has implications for human and experimental metabolic studies.

2020 ◽  
Author(s):  
Tahliyah S. Mims ◽  
Qusai Al Abdullah ◽  
Justin D. Stewart ◽  
Sydney P. Watts ◽  
Catrina T. White ◽  
...  

ABSTRACTObjectiveAs an active interface between the host and their diet, the gut bacteriome influences host metabolic adaptation. However, the contribution of gut fungi to host metabolic outcomes is not yet understood. Therefore, we aimed to determine if host metabolic response to an ultra-processed diet reflects gut fungal community composition.DesignWe compared jejunal fungi and bacteria from 72 healthy mice with the same genetic background but different starting mycobiomes before and after 8 weeks on an ultra-processed or standardized diet using 16S and internal transcribed spacer region 2 ribosomal RNA sequencing. We measured host body composition using magnetic resonance imaging, examined changes in metabolically active host tissues and quantified serum metabolic biomarkers.ResultsGut fungal communities are highly variable between mice, differing by vendor, age and sex. After exposure to an ultra-processed diet for 8 weeks, persistent differences in fungal community composition strongly associate with differential deposition of body mass in male mice compared to mice on standardized diet. Fat deposition in the liver, genomic adaptation of metabolically active tissues and serum metabolic biomarkers are correlated with alterations in fungal diversity and community composition. Variation in fungi from the genera Thermomyces and Saccharomyces most strongly associate with increased weight gain.ConclusionsIn the gut of healthy mice, host-microbe metabolic interactions strongly reflect variability in fungal communities. Our results confirm the importance of luminal fungal communities to host metabolic adaptation to dietary exposure. Gut fungal communities may represent a therapeutic target for the prevention and treatment of metabolic disease.Graphical AbstractIn BriefWhat is already known about this subject?Gut bacterial communities have evolved to influence the metabolic outcomes of the host in mammals. Evidence from across the lifespan suggests that differences in composition of these communities is associated with energy consumption. However, gut microbial communities, while often equated to bacteria, are diverse, multi-kingdom ecologies and limited information is available for the role of other kingdoms of life, such as fungi.What are the new findings?Gut fungal communities, collectively termed the mycobiome, are less diverse and abundant than bacterial communities in the gastrointestinal tract. This study identifies the considerable influence of the environment and dietary exposure on the composition of jejunal fungal communities in healthy mice with the same genetic background. After exposure to processed diet, differences in fungal community composition in male mice were strongly correlated with persistent differences body composition and markers of metabolic tone.How might it impact on clinical practice in the foreseeable future?These results verify that the baseline metabolic tone of health mice strongly reflects the ecological complexity of the gastrointestinal mycobiome. Variation in the composition of gut fungal communities is likely an underappreciated source of experimental and clinical variability in metabolic studies. Gastrointestinal fungi are likely a target for prevention and treatment of metabolic disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhimin Zhang ◽  
Qinghui Deng ◽  
Xiuyun Cao ◽  
Yiyong Zhou ◽  
Chunlei Song

Despite fungi playing an important role in nutrient decomposition in aquatic ecosystems and being considered as vital actors in the ecological processes, they received limited attention regarding the community in aquaculture pond sediments which are extremely important and typically disturbed habitats. Using an ITS1 region of fungal rDNA, this study aimed to investigate sediment fungal communities in fish, crab, and crayfish ponds for decades of farming practices at representative aquaculture regions in the middle Yangtze River basin, China. We then aimed to explore the community patterns associated with species-based farming practices in the ponds at 18 farms. The results showed that the pond sediments harbored more than 9,000 operational taxonomic units. The sediments had significantly higher alpha diversity in crab ponds compared to that in fish and crayfish ponds. The fungal phyla largely belonged to Ascomycota and Chytridiomycota, and the dominance of Rozellomycota over Basidiomycota and Aphelidiomycota was observed. The majority of sediment fungal members were ascribed to unclassified fungi, with higher proportions in fish ponds than crab and crayfish ponds. Further, the fungal communities were markedly distinct among the three types of ponds, suggesting divergent patterns of fungal community assemblages caused by farming practices in aquaculture ponds. The community diversity and structure were closely correlated to sediment properties, especially sediment carbon content and pH. Thus, the distribution and pattern of fungal communities in the sediments appear to primarily depend on species-based farming practices responsible for the resulting sediment carbon content and pH in aquaculture ponds. This study provides a detailed snapshot and extension of understanding fungal community structure and variability in pond ecosystems, highlighting the impacts of farming practices on the assembly and succession of sediment fungal communities in aquaculture ponds.


2021 ◽  
Author(s):  
Michel Rodrigo Zambrano Passarini ◽  
Júlia Ronzella Ottoni ◽  
Paulo Emílio Santos Costa ◽  
Denise Cavalvante Hissa ◽  
Raul Maia Falcão ◽  
...  

Abstract The inappropriate disposal of toxic compounds generated by industrial activity has been impacting to the environment considerably. Microbial communities inhabiting contaminated sites may represent interesting ecological alternatives for the decontamination of environments. The present work aimed to investigate the fungal diversity inhabiting sediments from industrial waste containing heavy metals by using metagenomic approach. A total of twelve fungal orders were retrieved from datasets and, at phylum level, Ascomycota was the most abundant, followed by Basidiomycota, Chytridiomycota and Blastocladiomycota. Higher abundance of sequences was encountered within the less contaminated site, while the lower abundance was found in the sample with the higher contamination with lead. Gene sequences related to DNA repair and heavy metals biosorption processes were found in the four samples analyzed. The genera Aspergillus and Chaetomium, and Saccharomycetales order were highly present within all samples, showing their potential to be used for bioremediation studies. The present work demonstrated the importance of using the metagenomic approach to understand the dynamics of fungal communities and their behavior under heavy metal contamination, aiming the use in bioremediation processes of environments contaminated with heavy metals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Tan ◽  
Wei-ai Zeng ◽  
Yansong Xiao ◽  
Pengfei Li ◽  
Songsong Gu ◽  
...  

In the plant rhizosphere and endosphere, some fungal and bacterial species regularly co-exist, however, our knowledge about their co-existence patterns is quite limited, especially during invasion by bacterial wilt pathogens. In this study, the fungal communities from soil to endophytic compartments were surveyed during an outbreak of tobacco wilt disease caused by Ralstonia solanacearum. It was found that the stem endophytic fungal community was significantly altered by pathogen invasion in terms of community diversity, structure, and composition. The associations among fungal species in the rhizosphere and endosphere infected by R. solanacearum showed more complex network structures than those of healthy plants. By integrating the bacterial dataset, associations between fungi and bacteria were inferred by Inter-Domain Ecological Network (IDEN) approach. It also revealed that infected samples, including both the rhizosphere and endosphere, had more complex interdomain networks than the corresponding healthy samples. Additionally, the bacterial wilt pathogenic Ralstonia members were identified as the keystone genus within the IDENs of both root and stem endophytic compartments. Ralstonia members was negatively correlated with the fungal genera Phoma, Gibberella, and Alternaria in infected roots, as well as Phoma, Gibberella, and Diaporthe in infected stems. This suggested that those endophytic fungi may play an important role in resisting the invasion of R. solanacearum.


mBio ◽  
2011 ◽  
Vol 2 (2) ◽  
Author(s):  
Sandrine P. Claus ◽  
Sandrine L. Ellero ◽  
Bernard Berger ◽  
Lutz Krause ◽  
Anne Bruttin ◽  
...  

ABSTRACT The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.


Toxins ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 581
Author(s):  
Tania Wong Fok Lung ◽  
Alice Prince

Staphylococcus aureus is a metabolically flexible pathogen that causes infection in diverse settings. An array of virulence factors, including the secreted toxins, enables S. aureus to colonize different environmental niches and initiate infections by any of several discrete pathways. During these infections, both S. aureus and host cells compete with each other for nutrients and remodel their metabolism for survival. This metabolic interaction/crosstalk determines the outcome of the infection. The reprogramming of metabolic pathways in host immune cells not only generates adenosine triphosphate (ATP) to meet the cellular energy requirements during the infection process but also activates antimicrobial responses for eventual bacterial clearance, including cell death pathways. The selective pressure exerted by host immune cells leads to the emergence of bacterial mutants adapted for chronicity. These host-adapted mutants are often characterized by substantial changes in the expression of their own metabolic genes, or by mutations in genes involved in metabolism and biofilm formation. Host-adapted S. aureus can rewire or benefit from the metabolic activities of the immune cells via several mechanisms to cause persistent infection. In this review, we discuss how S. aureus activates host innate immune signaling, which results in an immune metabolic pressure that shapes S. aureus metabolic adaptation and determines the outcome of the infection.


2015 ◽  
Vol 112 (50) ◽  
pp. 15450-15455 ◽  
Author(s):  
Mallory Embree ◽  
Joanne K. Liu ◽  
Mahmoud M. Al-Bassam ◽  
Karsten Zengler

Microorganisms form diverse communities that have a profound impact on the environment and human health. Recent technological advances have enabled elucidation of community diversity at high resolution. Investigation of microbial communities has revealed that they often contain multiple members with complementing and seemingly redundant metabolic capabilities. An understanding of the communal impacts of redundant metabolic capabilities is currently lacking; specifically, it is not known whether metabolic redundancy will foster competition or motivate cooperation. By investigating methanogenic populations, we identified the multidimensional interspecies interactions that define composition and dynamics within syntrophic communities that play a key role in the global carbon cycle. Species-specific genomes were extracted from metagenomic data using differential coverage binning. We used metabolic modeling leveraging metatranscriptomic information to reveal and quantify a complex intertwined system of syntrophic relationships. Our results show that amino acid auxotrophies create additional interdependencies that define community composition and control carbon and energy flux through the system while simultaneously contributing to overall community robustness. Strategic use of antimicrobials further reinforces this intricate interspecies network. Collectively, our study reveals the multidimensional interactions in syntrophic communities that promote high species richness and bolster community stability during environmental perturbations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Li Zhang ◽  
Yuzhi Ren ◽  
Kaijun Yang ◽  
Zhijie Li ◽  
Bo Tan ◽  
...  

Abstract Background Soil fungi play crucial roles in ecosystem functions. However, how snow cover change associated with winter warming affects soil fungal communities remains unclear in the Tibetan forest. Methods We conducted a snow manipulation experiment to explore immediate and legacy effects of snow exclusion on soil fungal community diversity and composition in a spruce forest on the eastern Tibetan Plateau. Soil fungal communities were performed by the high throughput sequencing of gene-fragments. Results Ascomycota and Basidiomycota were the two dominant fungal phyla and Archaeorhizomyces, Aspergillus and Amanita were the three most common genera across seasons and snow manipulations. Snow exclusion did not affect the diversity and structure of soil fungal community in both snow-covered and snow-free seasons. However, the relative abundance of some fungal communities was different among seasons. Soil fungal groups were correlated with environmental factors (i.e., temperature and moisture) and soil biochemical variables (i.e., ammonium and enzyme). Conclusions These results suggest that the season-driven variations had stronger impacts on soil fungal community than short-term snow cover change. Such findings may have important implications for soil microbial processes in Tibetan forests experiencing significant decreases in snowfall.


2020 ◽  
Vol 8 (5) ◽  
pp. 632 ◽  
Author(s):  
Fei Xie ◽  
Anzhou Ma ◽  
Hanchang Zhou ◽  
Yu Liang ◽  
Jun Yin ◽  
...  

The biodiversity of fungi, which are extremely important in maintaining the ecosystem balance in alpine lakeside wetlands, has not been fully studied. In this study, we investigated the fungal communities of three lakeside wetlands from different altitudes in the Qinghai–Tibet Plateau and its edge. The results showed that the fungi of the alpine lakeside wetland had higher species diversity. Functional annotation of fungi by FUNGild software showed that saprophytic fungi were the most abundant type in all three wetlands. Further analysis of the microbial phylogenetic molecular ecological network (pMEN) showed that saprophytic fungi are important species in the three wetland fungal networks, while symbiotic fungi and pathotrophic fungi have different roles in the fungal networks in different wetlands. Community diversity was high in all three lakeside wetlands, but there were significant differences in the composition, function and network structure of the fungal communities. Contemporary environmental conditions (soil properties) and historical contingencies (geographic sampling location) jointly determine fungi community diversity in this study. These results expand our knowledge of fungal biodiversity in the alpine lakeside wetlands.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alan R. Pacheco ◽  
Melisa L. Osborne ◽  
Daniel Segrè

AbstractEnvironmental composition is a major, though poorly understood, determinant of microbiome dynamics. Here we ask whether general principles govern how microbial community growth yield and diversity scale with an increasing number of environmental molecules. By assembling hundreds of synthetic consortia in vitro, we find that growth yield can remain constant or increase in a non-additive manner with environmental complexity. Conversely, taxonomic diversity is often much lower than expected. To better understand these deviations, we formulate metrics for epistatic interactions between environments and use them to compare our results to communities simulated with experimentally-parametrized consumer resource models. We find that key metabolic and ecological factors, including species similarity, degree of specialization, and metabolic interactions, modulate the observed non-additivity and govern the response of communities to combinations of resource pools. Our results demonstrate that environmental complexity alone is not sufficient for maintaining community diversity, and provide practical guidance for designing and controlling microbial ecosystems.


Sign in / Sign up

Export Citation Format

Share Document