scholarly journals Geo-Temporal Signatures of Physicochemical and Heavy Metals Pollution in Groundwater of Khulais Region—Makkah Province, Saudi Arabia

2022 ◽  
Vol 9 ◽  
Author(s):  
Mohd Yawar Ali Khan ◽  
Mohamed El Kashouty ◽  
Waleed Gusti ◽  
Amit Kumar ◽  
Ali Mohammad Subyani ◽  
...  

Seawater has intruded into many of Saudi Arabia’s Red Sea coastal aquifers, with varying degrees of extension depending on location, hydrogeology, and population density. This study aimed to evaluate and comprehend the processes that influence the hydrogeochemical characteristics of the coastal aquifer in Saudi Arabia’s Khulais region. Groundwater samples were taken from nineteen locations during the winter and summer of 2021, and data from major ions and trace elements were examined and interpreted using ArcGIS software. The total dissolved solids (TDS) concentrations ranged between 480 and 15,236 mg/L and 887–18,620 mg/L in winter and summer, respectively. Groundwater TDS concentration was observed to be influenced by groundwater flow, lithogenic, anthropogenic, and seawater intrusion in this study (2021) when compared to 2016. The concentration of nitrate (NO3−) and strontium (Sr) in most samples exceeds the drinking guidelines. The occurrence of high concentrations of bromide (Br), Fluoride (F), Iron (Fe) (winter and summer) and Aluminum (Al), Boron (B), Chromium (Cr), Nickel (Ni), lead (Pb), cadmium (Cd), cobalt (Co), copper (Cu) and manganese (Mn) (winter) was also exhibited and observed up to more than drinking and irrigation limits. The central part of the study area was affected by seawater intrusion. The hydraulic conductivity of the topsoil was measured, and it ranged from 0.24 to 29.3 m/day. Based on electrical conductivity (EC) and sodium absorption ratio, most aquifer samples were unsuitable for irrigation (SAR).

2017 ◽  
Vol 17 (5) ◽  
pp. 1368-1376 ◽  
Author(s):  
Elsayed M. Abu El Ella ◽  
Ahmed A. Elnazer ◽  
Salman A. Salman

Southwest Giza area is one of the most complicated regions in Egypt because of the combination of agricultural, industrial and urbanization activities with few studies about water resources contamination with heavy metals. In this study, ten surface water samples and eight groundwater samples were collected and analyzed for pollution with Fe, Mn, As, Cr, Cd, Pb and Cu. The samples were collected randomly according to the topographic locations and accessibility. The surface water is suitable for both drinking and irrigation use according to its salinity (total dissolved solids, TDS < 500 mg/l) and content of major ions. Unfortunately, some samples contain concentrations of As, Cd, Cu and Pb higher than the WHO drinking water guidelines. The groundwater samples have TDS ranging from 204 to 2,100 mg/l. Also, the groundwater contains higher concentrations of Fe, Mn and As than surface water. The highest concentrations of heavy metals As, Cd and Pb were recorded in the desert fringes and close to the industrial complexes indicating the role of geological sediments in the transportation and migration of pollutants. The unconfined part of the Quaternary aquifer in the desert fringes is more vulnerable to contamination. The results of this study reflect the role of human and industrial activates in polluting water resources with heavy metals, which puts the aquatic environment in the study area under stress.


2018 ◽  
Vol 39 (1) ◽  
pp. 109-117
Author(s):  
Ikram Mokeddem ◽  
Meriem Belhachemi ◽  
Touhami Merzougui ◽  
Noria Nabbou ◽  
Salih Lachache

AbstractGroundwater samples from Turonian aquifer of Béchar region were evaluated as drinking and irrigation water sources. physicochemical parameters including pH, EC, TH, Na+, Ca2+, Mg2+, Cl−, SO42– and NO3− were determined for 16 water sampling points. These characterizations show that the groundwater is fresh to brackish, slightly alkaline and the major ions are Na+, Ca2+, Mg2+, Cl− and SO42–. According to WHO standards, 50% of the analysed water are suitable as a drinking source while the other samples are not in compliance with drinking water standards. This non-compliance is basically due to the high concentrations of Na+, Cl−, and SO42– requesting further treatment to reach the stringent standards. According to the results of nitrate concentrations, anthropogenic source seems to influence the groundwater quality. The present study shows that Béchar groundwater may represent an important drinking and irrigation water source. However, a specific management strategy should be adapted in order to avoid the contamination by anthropogenic sources.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Hanaa A. Megahed

Abstract Background The limited water resources in arid environments in addition to the effect of agricultural and anthropogenic activities on groundwater quantity and quality necessitate paying more attention to the quality assessment of these resources. The present studies assess the quality of groundwater resources in Wadi El-Assiuti, south Egypt, and evaluate their suitability for drinking and irrigation purposes. To achieve this goal, 159 groundwater samples were collected from the outlet and central parts of the Wadi El-Assiuti during the autumn season (October–November) of 2019 and were analyzed for major ions, trace elements and heavy metals. Results The results indicate that the TDS values range between 1972 and 6217 ppm, while the concentration of trace elements (Fe++, Mn++ and Ni+) ranges between 0.05 and 0.46, 0.11 and 0.221 and 0.01 and 0.6 ppm, respectively. These results show that all groundwater samples are clearly unacceptable and inappropriate for human drinking due to their high content of total dissolved solids, trace elements and heavy metals, particularly in the majority of samples according to World Health Organization (WHO) guidelines and the Egyptian standards (Eg. St. 2007) for drinking water quality. Spatial analysis of the TDS values in geographic information system environment indicates that the salinity is higher in the northeast and gradually decreases southward. Sodium adsorption ratio, US Salinity Laboratory classification (1954), residual sodium carbonate, soluble sodium percentage and permeability index show that most groundwater samples are suitable for irrigation purposes. Conclusions The integrated approach provided in this study highlights the spatially distributed suitability of groundwater resources in Wadi El-Assiuti and can be applied in similar basins worldwide.


2015 ◽  
Vol 10 (2) ◽  
pp. 390-401 ◽  
Author(s):  
He-rong Gui ◽  
Man-li Lin ◽  
Wei-hua Peng

Six groundwater samples were collected from four aquifers in Renlou coal mine, northern Anhui Province, China, and concentration, temporal variation and speciation of five heavy metals (Cr, Cu, Ni, Pb and Zn) were analyzed. The results of physicochemical parameters and major ions showed that the selected groundwater were representative samples of Quaternary aquifer (QA), coal measure aquifer (CA), Taiyuan limestone aquifer (TA) and Ordovician limestone aquifer (OA). Cr, Ni and Zn increased in the four aquifers from 2002 to 2014, but Pb decreased from 2006 to 2014. Cu concentration increased in QA and TA, but decreased in CA and OA. Although all monitoring results met the standards recommended by WHO and GB5749-2006, Cr and Cu in some groundwater samples exceeded GB/T 14848-93, especially in CA. Soluble metallic hydroxides were the dominant species of heavy metals in QA, while free ions were the main species in TA and OA. Excepted Ni2+ and Zn2+, CuCO3(aq) and PbCO3(aq) were the dominant species of Cu and Pb in CA, respectively, indicating more CO2 had been flooded and dissolved in groundwater from ground atmospheric environment. The enhanced concentration and special dominant species of heavy metals revealed that the ‘closed’ characteristics of CA in Renlou coal mine might have been broken due to coal mining activity.


2017 ◽  
Vol 43 (4) ◽  
pp. 1697
Author(s):  
I. Gkiougkis ◽  
G. Mwila ◽  
F. Pliakas ◽  
A. Kallioras ◽  
I. Diamantis

This paper deals with the hydrogeological study of the evolution of groundwater salinisation - degradation at the eastern Nestos River Delta. Relevant field works including in-situ measurements of groundwater level, pH, Specific Electrical Conductivity (SEC) and temperature took place in the years 2008 and 2009. Groundwater samples were also collected for chemical analysis at the Engineering Geology Laboratory of the Department of Civil Engineering of D.U.Th. (July of 2009). Important conclusions regarding the progress of the groundwater degradation at the study area were drawn based on the analysis of all the available data and the elaboration of the designed piezometric maps and the various maps showing the distribution of SEC, Chloride, SAR (Sodium Absorption Ratio) and Revelle coefficient values. Some managerial suggestions for the confrontation of the seawater intrusion regime of the study area are also included.


2019 ◽  
Vol 11 (17) ◽  
pp. 251
Author(s):  
Luma Lorena L. S. Rodrigues ◽  
Eulene F. Silva ◽  
Milene L. Farias ◽  
Antônio M. Pinheiro ◽  
Renner B. Lima ◽  
...  

The objective of this work was to assess the physicochemical and microbiological characteristics, as well as the potential of salinization and sodification of groundwater wells in Limoeiro do Norte, Ceará states, Brazil. Six water wells were selected for the study, all of them used for irrigation and human consumption. The ionic classification was performed by Piper Diagram and the salinity risk using the U.S.S.L. (United States Salinity Laboratory) Diagram using Qualigraf software. Based on the average chemical element concentration (mmolc L-1) in the groundwater, the following quantification is obtained: Na+ > Ca2+ > Mg2+ > K+ for cations. For anions there was a change in the the wells, for the 1, 3 and 4 Cl- > HCO3- > SO42- > CO32- and wells 2, 5 and 6 HCO3- > Cl- > SO42- > CO32-. The wells 1, 2 and 3 have severe restrictions for use by SAR (sodium absorption ratio) and Na+ content. Water from wells 1, 3 and 5 were classified as sodium chloride, 2 and 6 were classified as sodium bicarbonate and well 4 as calcium magnesium sulfate. With the exception of well 6 classified as freshwater, all other wells were classified as brackish water. Groundwater samples fall in C3S1 or C3S2 category with high salinity and low or medium sodium hazard. With the exception of Na+, whose value was above the limit allowed, no well with groundwater was detected chemical hazard for human consumption. There was the detection of Total coliforms, but in well 5 the presence of Thermotolerant coliforms was detected.


2000 ◽  
Vol 21 ◽  
Author(s):  
A. L. Haldar ◽  
P. Dev

The quality of selected bored well and dug well waters from the central tracts of the Lalitpur region in the state of Uttar Pradesh, India, was investigated for irrigation purposes.  The study area is situated within the latitudes 24° 35' N and 24° 43' N, and the longitudes 78° 20' 41" E and 78° 30' E in the basin of the Shahzad River, which is a tributary of the Betwa River. Granites and gneisses of Archaean age are exposed in various parts of the area. The selected groundwater samples were analysed for major cations, anions, trace elements, pH, electrical conductivity (EC), sodium absorption ratio (SAR), residual sodium carbonate (RSC), permeability index (Pl), and sodium per cent (SP). The analysed data were plotted on Wilcox and U.S. salinity diagrams to evaluate chemical quality of groundwater for irrigation. The SAR values (ranging from 0.47 to 79) are within the permissible limits. A majority of samples (i.e., 57.5%) belong to C3-S, class whereas remaining samples (42.5%) fall in C2-S1 class. Plots of SP against EC indicate that a large number of samples (67.5%) fall within Excellent to Good type of water whereas remaining samples lie within Good to Permissible type. Hence the water can be used for all types of crop on soils of medium to high permeability.


2019 ◽  
Vol 19 (1) ◽  
pp. 19
Author(s):  
Evarista Ristin Pujiindiyati ◽  
Satrio Satrio ◽  
Rasi Prasetio

Bantar Gebang landfill located in Bekasi regency is a biggest sanitary landfill in Indonesia which comes up some refusals from local people because of its bad impact on their environment. Major ion contents in leachate and fresh groundwater were investigated during the rainy and dry season to determine contamination by leachate released from Bantar Gebang and Sumur Batu landfill. Leachate contained high concentrations of all major ions that was mainly characterized as a NaKHCO3 water type. On the other hand, most fresh groundwater samples were predominated by CaMgHCO3 and CaMgCl water type. Concentrations of K+, Ca2+, Mg2+, Na+, SO42-, Cl-, HCO3- and NO3- in leachate were to be in a maximum factor of 2110; 7; 6; 143; 20; 112; 349 and 20, respectively than its contents in groundwater. Leachate from Bantar Gebang was detected have a higher concentration than those contained in Sumur Batu that was probably due to its mature leachate. An estimated mixture of leachate to fresh water in monitoring wells (5 m and 15 m depth) was in the range of 20 to 34%, related to Na+ and Cl- signatures, while the shallow groundwater located in residents in the vicinity of these landfills exhibited maximum leachate about 2%.


2020 ◽  
Author(s):  
Prerna Joshi ◽  
Neelam Siva Siddaiah

<p>Delhi, India’s capital is the second largest urban agglomeration in the world. It is expected to surpass Tokyo to become world’s largest city by 2028 with ~37 million inhabitants (UNDESA, 2018). This rapid growth is characterized by unsystematic urbanization, rapid shifts in its landuse patterns and tremendous pressure on the city’s natural resources. Among other forms of resource degradation, rapidly shrinking and stinking wetlands are of primary concern. Thus evidence-based policy making for their sustainable development and conservation require regular reporting and monitoring of their status.<br>Present study compares the hydrochemistry of two urban wetlands of Delhi (Sanjay lake and Bhalswa lake) having some crucial differences in their nature and catchment area activities. Surface water quality of these wetlands was studied for winter and summer with respect to their physico-chemical properties (temperature, pH, dissolved oxygen, electrical conductivity, total dissolved solids, alkalinity and hardness) including major ions and trace metals employing standard analytical methods (APHA, 2005). Waters from both the wetlands are alkaline in nature. While pH of Sanjay lake shows a greater variation (7.9 to 10.8), that of Bhalswa lake is fairly constant (8.4 to 8.7), across the seasons. The wetland waters also vary seasonally in their chemistry. Differences in the nature and associated landuse of the wetlands is reflected in their water quality. Hydrogeochemistry of these wetlands were determined by Piper plot and Gibb’s diagram. While water from both the wetlands are Na<sup>+</sup>- SO<sub>4</sub><sup>2-</sup> type during summer, water from Bhalswa lake is Na<sup>+</sup>- SO<sub>4</sub><sup>2-</sup> type and that from Sanjay lake is Ca<sup>2+</sup>-Mg<sup>2+</sup>- SO<sub>4</sub><sup>2-</sup> type during winter. While water from Bhalswa lake shows an evaporation dominance regime, that from Sanjay lake show dominance of rock-water interaction. Water from both the wetlands are generally unsuitable for drinking purpose. While water from Bhalswa lake is unsuitable for irrigation as well, water from Sanjay lake is generally suitable as determined using various indices (% Na, Residual Sodium Carbonate, Sodium Absorption Ratio, etc.). Both the drinking and irrigational water quality of these wetlands deteriorate during summer. Factor analysis was also used to determine sources of pollution for the two wetlands during both winter and summer. Domestic sewage is observed to be a major source of pollution for both the wetlands. Thus, this study indicates that urban wetlands of Delhi are fast depleting in their health. In light of their importance as a significant urban water resource, a crucial ecological niche and an essential recreational spot for urban areas, there is an urgent need for positive interventions.</p>


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 200 ◽  
Author(s):  
S. Manikandan ◽  
S. Chidambaram ◽  
M. V. Prasanna ◽  
Rakesh Roshan Ganayat

The area chosen for study, Krishnagiri district, has a hard rock terrain and the aquifers located there are sparsely recharged by limited rainfall. The study area has a complex geology with hard rock aquifers. To have an overall view of the trace metals concentration in the groundwater of the study area, 39 groundwater samples were collected during Post Monsoon (POM) representing various lithologies. pH, EC, TDS, major ions and 22 heavy metals were analyzed for all the samples. Ca-Cl is the dominant water facies in the groundwater, which indicates the dissolution of ions by local precipitation. The analysis shows the dominance of trace metal levels in groundwater as follows: Zn > Ba > Sr > Fe > Al > B > Mn > Cu > Pb > Ni > V > Li > Rb > Cr > Mo > Se > As > Co > Cd > Ag > Sb > Be. The pollution indices, namely the heavy metal pollution index (HPI) and degree of contamination (Cd) were calculated to assess the drinking and agriculture water usage. The pollution indices show that 2% of samples are polluted with respect to HPI and 3% with respect to the degree of contamination. The heavy metals (Al-Cr-Mn-Fe-Ni-Co-Zn-Ba-Pb) in groundwater show significant correlations with these indices, suggesting that they are affected by weathering of rock matrix with less anthropogenic impact. Stable isotopes (Oxygen and Hydrogen) were analyzed to identify the possible recharge mechanisms in the groundwater. It has been identified that recharge is mainly due to the local precipitation, which is the result of release metals in the groundwater through weathering.


Sign in / Sign up

Export Citation Format

Share Document