scholarly journals A temperature sensitive mutation in the CstF77 subunit of the polyadenylation complex reveals the critical function of mRNA 3' end formation for a robust heat stress response in plants

2021 ◽  
Author(s):  
Minsoo Kim ◽  
John D Swenson ◽  
Fionn McLoughlin ◽  
Elizabeth Vierling

Background: Heat Shock Protein 101 (HSP101) in plants and orthologs in bacteria (Caseinolytic peptidase B, ClpB) and yeast (Hsp104) are essential for thermotolerance. To investigate molecular mechanisms of thermotolerance involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a semi-dominant, missense HSP101 allele, hot1-4 (A499T). Plants carrying the hot1-4 mutation are more heat-sensitive than an HSP101 null mutant (hot1-3), indicating the toxicity of hot1-4 allele. Results: We report that one suppressor (shot2, suppressor of hot1-4 2) has a temperature-sensitive, missense mutation (E170K) in the CstF77 (Cleavage stimulation factor 77) subunit of the polyadenylation complex, which is critical for 3' end maturation of pre-mRNA. RNA-Seq analysis of total RNA depleted of ribosomes reveals that heat treatment causes transcriptional readthrough events in shot2, specifically in highly heat-induced genes, including the toxic hot1-4 gene. In addition, failure of correct transcript processing leads to reduced accumulation of many HSP RNAs and proteins, suppressing heat sensitivity of the hot1-4 mutant, due to reduction of the toxic mutant HSP101 protein. Notably, the shot2 mutation makes plants more sensitive to heat stress in the HSP101 null (hot1-3) and wild-type backgrounds correlated with the reduced expression of other heat-inducible genes required for thermotolerance. Conclusions: Our study reveals the critical function of CstF77 for 3' end formation of mRNA during heat stress, as well as the dominant role of HSP101 in dictating the outcome of severe heat stress in plants.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1733
Author(s):  
Ho Viet Khoa ◽  
Puja Kumari ◽  
Hiroko Uchida ◽  
Akio Murakami ◽  
Satoshi Shimada ◽  
...  

The red alga ‘Bangia’ sp. ESS1, a ‘Bangia’ 2 clade member, responds to heat stress via accelerated asexual reproduction and acquires thermotolerance based on heat-stress memory. However, whether these strategies are specific to ‘Bangia’ 2, especially ‘Bangia’ sp. ESS1, or whether they are employed by all ‘Bangia’ species is currently unknown. Here, we examined the heat-stress responses of ‘Bangia’ sp. ESS2, a newly identified ‘Bangia’ clade 3 member, and Bangia atropurpurea. Intrinsic thermotolerance differed among species: Whereas ‘Bangia’ sp. ESS1 survived at 30 °C for 7 days, ‘Bangia’ sp. ESS2 and B. atropurpurea did not, with B. atropurpurea showing the highest heat sensitivity. Under sublethal heat stress, the release of asexual spores was highly repressed in ‘Bangia’ sp. ESS2 and completely repressed in B. atropurpurea, whereas it was enhanced in ‘Bangia’ sp. ESS1. ‘Bangia’ sp. ESS2 failed to acquire heat-stress tolerance under sublethal heat-stress conditions, whereas the acquisition of heat tolerance by priming with sublethal high temperatures was observed in both B. atropurpurea and ‘Bangia’ sp. ESS1. Finally, unlike ‘Bangia’ sp. ESS1, neither ‘Bangia’ sp. ESS2 nor B. atropurpurea acquired heat-stress memory. These findings provide insights into the diverse heat-stress response strategies among species from different clades of ‘Bangia’.


2019 ◽  
Vol 20 (1) ◽  
pp. 132 ◽  
Author(s):  
Chang Ho Kang ◽  
Joung Hun Park ◽  
Eun Seon Lee ◽  
Seol Ki Paeng ◽  
Ho Byoung Chae ◽  
...  

In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on the temperature-sensitive ypt1-G80D mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1pG80D. This defect results from an inability of the protein to form high molecular weight polymers, even though it retains almost normal GTPase function. The heat-stress sensitivity of ypt1-G80D cells was partially recovered by treatment with 4-phenylbutyric acid, a chemical chaperone. These findings indicate that loss of the chaperone function of Ypt1pG80D underlies the heat sensitivity of ypt1-G80D cells. We also compared the proteomes of YPT1 (wild-type) and ypt1-G80D cells to investigate Ypt1p-controlled proteins under heat-stress conditions. Our findings suggest that Ypt1p controls an abundance of proteins involved in metabolism, protein synthesis, cellular energy generation, stress response, and DNA regulation. Finally, we suggest that Ypt1p essentially regulates fundamental cellular processes under heat-stress conditions by acting as a molecular chaperone.


2019 ◽  
Vol 70 (1) ◽  
pp. 753-780 ◽  
Author(s):  
Jingyu Zhang ◽  
Xin-Min Li ◽  
Hong-Xuan Lin ◽  
Kang Chong

Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of the trade-off between defense and development. Vernalization is a cold-dependent development adjustment mediated by O-GlcNAcylation and phosphorylation to sense long-term cold. Recent progress on major quantitative trait loci genes for heat tolerance has been summarized. Molecular mechanisms in utilizing temperature-sensitive sterility in super hybrid breeding in China are revealed. The way to improve crop temperature resilience using integrative knowledge of omics as well as systemic and synthetic biology, especially the molecular module program, is summarized.


2013 ◽  
Vol 432 (2) ◽  
pp. 203-207 ◽  
Author(s):  
Ai-Li Qu ◽  
Yan-Fei Ding ◽  
Qiong Jiang ◽  
Cheng Zhu

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 457
Author(s):  
Jaiana Malabarba ◽  
David Windels ◽  
Wenjia Xu ◽  
Jerome Verdier

Seed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling, and the acquisition of germination capacity, desiccation tolerance, longevity, and dormancy. Heat stress can negatively impact these processes and upon the increase of global mean temperatures, global food security is threatened. Here, we explored the impact of heat stress on seed physiology, morphology, gene expression, and methylation on three stages of seed development. Notably, Arabidopsis Col-0 plants under heat stress presented a decrease in germination capacity as well as a decrease in longevity. We observed that upon mild stress, gene expression and DNA methylation were moderately affected. Nevertheless, upon severe heat stress during seed development, gene expression was intensively modified, promoting heat stress response mechanisms including the activation of the ABA pathway. By analyzing candidate epigenetic markers using the mutants’ physiological assays, we observed that the lack of DNA demethylation by the ROS1 gene impaired seed germination by affecting germination-related gene expression. On the other hand, we also observed that upon severe stress, a large proportion of differentially methylated regions (DMRs) were located in the promoters and gene sequences of germination-related genes. To conclude, our results indicate that DNA (de)methylation could be a key regulatory process to ensure proper seed germination of seeds produced under heat stress.


2020 ◽  
Author(s):  
Jing Wang ◽  
Chengliang Liang ◽  
Sha Yang ◽  
Jingshuang Song ◽  
Xuefeng Li ◽  
...  

Abstract Background: As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Result: In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper seedlings in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180. Conclusion: To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. This study provided new insights into the molecular mechanisms involved in heat tolerance of pepper and might offer supportive reference for the breeding of new pepper variety with heat resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojuan Xing ◽  
Yurong Ding ◽  
Jinyu Jin ◽  
Aiping Song ◽  
Sumei Chen ◽  
...  

Heat stress limits the growth and development of chrysanthemum seedlings. Although melatonin (MT) has been linked to the heat stress response in plants, research on the underlying molecular mechanisms is scarce. In this study, the regulatory networks of MT on heat stress in chrysanthemum seedlings were explored. Physiological measurements suggested that MT not only reduced malondialdehyde accumulation, hydrogen peroxide content, and superoxide anion free radical generation rate, but also significantly promoted osmotic regulation substance synthesis (proline and soluble protein), antioxidant accumulation (GSH and AsA), and the antioxidant enzyme activities (SOD, POD, CAT, and APX) in chrysanthemum leaves under heat stress. Furthermore, MT increased the fresh weight, dry weight, chlorophyll content, photosynthesis rate, and gas exchange indexes. Further, RNA-seq results revealed 33,497 and 36,740 differentially expressed genes in the S/Con and SMT/ConMT comparisons, respectively. The differences in the comparisons revealed that MT regulated heat shock transcription factors (HSFs) and heat shock proteins (HSPs), and the genes involved in Ca2+ signal transduction (CNGCs and CAM/CMLs), starch and sucrose metabolism (EDGL, BGLU, SuS, and SPS), hormone (PP2Cs, AUX/IAAs, EBFs, and MYC2), chlorophyll metabolism (HEMA and PORA), flavonoid biosynthesis (CHS, DFR, and FNS), and carotenoid biosynthesis (DXPS, GGDP, and PSY). MT effectively improved chrysanthemum seedling heat-resistance. Our study, thus, provides novel evidence of a gene network regulated by MT under heat stress.


2021 ◽  
Author(s):  
Jaiana Malabarba ◽  
David Windels ◽  
Wenjia Xu ◽  
Jerome Verdier

AbstractSeed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling and the acquisition of germination capacity, desiccation tolerance, longevity and dormancy. Heat stress can negatively impact these processes and upon the increasing of global mean temperatures, global food security is threatened. Here, we explored the impact of heat stress on seed physiology, morphology, gene expression and methylation on three stages of seed development. Notably, Arabidopsis Col-0 plants under heat stress presented a decrease in germination capacity and also a decrease in longevity. We observed that upon mild stress, gene expression and DNA methylation were moderately affected. Nevertheless, upon severe heat stress during seed development, gene expression was intensively modified, promoting heat stress response mechanisms, including the activation of ABA pathway. By analyzing candidate epigenetic marks using mutants’ physiological assays, we observed that the lack of DNA demethylation by ROS1 gene impaired seed germination by affecting germination-related genes expression. On the other hand, we also observed that upon severe stress, a large proportion of differentially methylated regions (DMRs) were located in promoters and gene sequences of germination-related genes. To conclude, our results indicate that DNA (de)methylation could be a key regulatory process to ensure proper seed germination of seeds produced under heat stress.Graphic Abstract


2017 ◽  
Author(s):  
Xi Lan ◽  
John C. F. Hsieh ◽  
Carl J. Schmidt ◽  
Qing Zhu ◽  
Susan J. Lamont

Sign in / Sign up

Export Citation Format

Share Document