scholarly journals Characterization of a New Fiber From Cyperus Dichrostachus A.Rich Plant

Author(s):  
BELETE BAYE GELAW(Lecturer) ◽  
Tamrate Tesfaye(D.r)

Abstract Natural fibers are of the good substitute sources for swapping synthetic fibers and reinforcing polymer matrices because of their contributions in maintaining of ecology, low energy requirement for processing and sustainability. The aim of this study is to characterize new fiber from Cyperus Dichrostachus A.Rich (CDA) plant. The CDA plant is a perennial non woody grass found in Ethiopian high lands and river basins. The fiber from this plant has good chemical composition of Cellulose (60.27%), hemicellulose (22.72%), lignin (16.59%) contents. It is light fiber having a density of 1010kg/m3 and good tenacity behaviour of 105.76cN/Tex with low elongation of 4.88%. The thermal stability of Cyperus Dicrostachys A,Rich fiber (CDAF) was studied using TGA and DTG analysis and revealed that the cellulose degraded at a temperature of 377.1°C. Fourier transform-infrared spectroscopy analysis confirmed that CDAF is rich in cellulose content. Furthermore, the properties of CDAF ensured that it can play a vital role as new reinforcement material and best alternative in bio composite industries. This will give competitive advantages when evaluated with other natural fibers reveals that there are significant potential benefits in implementation of “cleaner production” in textile material production industries. Specifically, replacement of synthetic fiber source with renewable biomass will reduce the environmental impact of these fibers. The future study will entail on investigating the possible valorization route especially in paper board, composite reinforcement and bio composite applications.

2015 ◽  
Vol 766-767 ◽  
pp. 122-132
Author(s):  
Tippusultan ◽  
V.N. Gaitonde

Polymers reinforced with synthetic fibers such as glass and carbon offer advantages of high stiffness and strength to weight ratio compared to conventional materials. Despite these advantages, the prevalent use of synthetic fiber-reinforced polymer composite has a tendency to demur because of high initial cost and most importantly their adverse environmental impact. On the contrary, the increased interest in using natural fibers as reinforcement in plastics to substitute conventional synthetic fibers in automobile applications has become one of the main concerns to study the potential of using natural fibers as reinforcement for polymers. In this regard, an investigative study has been carried out to make potential utilization of natural fibers such as Jute and Coir as reinforcements, which are cheap and abundantly available in India. The objective of the present research work is to study the effects of fiber loading and particle size; fiber loading and fiber length on the mechanical properties of Jute-PP and Coir-PP bio-composites respectively. The experiments were planned as per full factorial design (FFD) and response surface methodology (RSM) based second order mathematical models of mechanical properties have been developed. Analysis of variance (ANOVA) has been employed to check the adequacy of the developed models. From the parametric analysis, it is revealed that Jute-PP bio-composites exhibit better mechanical properties when compared to Coir-PP bio-composites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


2015 ◽  
Vol 754-755 ◽  
pp. 235-239
Author(s):  
A. Zuliahani ◽  
H.D. Rozman ◽  
Abdul Rahman Rozyanty

The use of natural fiber as reinforcement in polymer composites has gained importance recently due to environmental concern and its abundance availability from agricultural crops and wood industry [1]. Many advantages offered by natural fibers over synthetic fibers include low density, greater deformability, low cost per unit volume, recyclability and biodegradability [2-3]. In addition, the mechanical properties of natural fibers such as flax, hemp, jute, sisal and kenaf are comparable with glass fiber in respect of strength and modulus [4]. Hence, many studies have been carried out to replace the synthetic fiber for composite preparation.


2016 ◽  
Vol 2 (3) ◽  
pp. 26
Author(s):  
Alessandra Vilardi

ResumenLa existencia de una gran cantidad de edificios antiguos ha movilizado la investigación para estudiar nuevos sistemas de refuerzo a aquellas construcciones que sean dañadas por decadencia fisiológica o por terremoto. El presente documento demuestra la eficacia de un sistema de refuerzo innovador para los muros de mampostería, constituyentes los elementos estructurales de los edificios históricos. Se hace una comparación entre unas redes bidireccionales de fibras sintéticas tradicionales y las de fibras naturales, ambas pegadas a las dos fachadas del muro con matriz de mortero. El resultado muestra la aplicación de las fibras de cáñamo como refuerzo sísmico y una mayor compatibilidad de estas con el material que caracterizan los edificios antiguos. AbstractThe existence of a large number of old buildings has mobilized research to study new systems of reinforcement to those buildings that are damaged by physiological decay or earthquake. This document demonstrates the effectiveness of an innovative reinforcement system for masonry walls, which are the structural elements of historic buildings. A comparison is made between bidirectional networks of traditional synthetic fibers and those of natural fibers, both glued to the two facades of the wall with mortar matrix. The result shows the application of hemp fibers as seismic reinforcement and a greater compatibility of these with the material that characterize the old buildings.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2259
Author(s):  
Michelle Souza Oliveira ◽  
Fernanda Santos da Luz ◽  
Andressa Teixeira Souza ◽  
Luana Cristyne da Cruz Demosthenes ◽  
Artur Camposo Pereira ◽  
...  

The replacement of synthetic fibers by natural fibers has, in recent decades, been the subject of intense research, particularly as reinforcement of composites. In this work, the lesser known tucum fiber, extracted from the leaves of the Amazon Astrocaryum vulgare palm tree, is investigated as a possible novel reinforcement of epoxy composites. The tucum fiber was characterized by pullout test for interfacial adhesion with epoxy matrix. The fiber presented a critical length of 6.30 mm, with interfacial shear strength of 2.73 MPa. Composites prepared with different volume fractions of 20 and 40% tucum fiber were characterized by tensile and Izod impact tests, as well as by ballistic impact energy absorption using .22 ammunition. A cost analysis compared the tucum fiber epoxy composites with other natural and synthetic fiber reinforced epoxy composites. The results showed that 40 vol% tucum fiber epoxy composites increased the tensile strength by 104% and the absorbed Izod impact energy by 157% in comparison to the plain epoxy, while the ballistic performance of the 20 vol% tucum fiber composites increased 150%. These results confirmed for the first time a reinforcement effect of the tucum fiber to polymer composites. Moreover, these composites exhibit superior cost effectiveness, taking into account a comparison made with others epoxy polymer composites.


Author(s):  
Sergio Pons Ribera ◽  
Rabah Hamzaoui ◽  
Johan Colin ◽  
Benitha Vasseur ◽  
Laetitia Bessette ◽  
...  

This work, which is part of the FIBRABETON project, aims to anti-fissuration screed formulations proposition based on natural fibers and comparing these formulations to a synthetic fiber-screed formulation. Different natural fiber (hemp, flax, miscanthus and bamboo) with contents rangingfrom 0.4% to 0.8% were tested. The spread (slump), the shrinkage and mechanical strength (flexural and compressive) studies were carried out. SEM images of natural fibers and natural fibers screed formulation were analyzed. Overall, it is found that all natural fibers screed formulations tested, have shown better behaviour than the synthetic fibers screed formulation in point of view workability, shrinkage and mechanical properties. The lowest shrinkage value is found in the case of the H5 (5 mm long hemp fibers) screed formulation. Generally speaking, the mechanical strength values (flexural and compressive) are more or less similar between natural soft fibers (hemp and flax) and rigid fibers (miscanthus and bamboo). Taking in account slump, shrinkage and mechanical behavior, the proposed good compromise in this work is the H5 screed formulation.


2016 ◽  
Vol 869 ◽  
pp. 331-337
Author(s):  
Foluke Salgado de Assis ◽  
Frederico Muylaert Margem ◽  
Pedro Amoy Netto ◽  
Roberto da Trindade Faria Jr. ◽  
Thallis Custódia Cordeiro ◽  
...  

Synthetic fibers are being replaced gradually by natural materials such as lignocellulosic fibers. Compared to synthetic fibers, natural fibers have shown advantages in environmental, societal, economical and technical aspects. Thus, there is a growing worldwide interest in the use of those fibers. The banana fiber, extracted from the pseudo-stem of the plant, displays significant properties yet to be studied. Few thermal properties on banana fiber as reinforcement of epoxy matrix were fully evaluated. Therefore, the present work had as its objective to investigate, by photoacoustic spectroscopy and photothermal techniques the thermal diffusivity, specific heat capacity and thermal conductivity of epoxy composites reinforced with banana fibers .The epoxy matrix was added with up to 30% in volume of continuous and aligned banana fibers. The results indicated that these composites have good insulation capacity.


2001 ◽  
Vol 702 ◽  
Author(s):  
Prabhu Kandachar ◽  
Rik Brouwer

ABSTRACTAvailable as agricultural resources in many countries, natural fibers, such as flax, hemp, kenaf, exhibit mechanical properties comparable to those of synthetic fibers like glass. But they are lighter, biodegradable, and are often claimed to be less expensive. Composites with these natural fibers have the potential to be attractive alternative to synthetic fiber composites. The natural fibers, however, exhibit more scatter in their properties, are thermally less stable and are sensitive to moisture absorption. The choice of matrix to reinforce with these fibers therefore becomes critical.Currently, synthetic non-biodegradable polymers, such as polypropylene, polyester, etc., are being explored as matrix materials, for applications in sectors like automobiles and buildings. Biodegradable polymers, if made available in sufficient quantities at affordable prices, pave way for bio-composites in future. With both matrix and fibers being biodegradable, bio-composites become attractive candidates from the environment point of view.Extensive and reliable property data on natural fiber composites and/or on bio-composites, are still lacking, making product design with these materials rather tedious. Once the database is available, design & manufacture of products with natural fiber composites and biocomposites offer several opportunities and challenges.


2022 ◽  
Author(s):  
BELETE BAYE Gelaw ◽  
Tamrat Tesfaye

Abstract The Textile industry is an important contributor to the GDP of countries worldwide. Both natural and synthetic fibers are the main raw materials for this sector. Environmental concerns, depletion of non-renewable resources, the high price of oil and limited oil reserves with consumer demand is driving research into cheap, biodegradable, sustainable, renewable and abundantly available green materials. Natural fibers are of the good substitute sources for swapping synthetic fibers and reinforcing polymer matrices because of their contributions in maintaining of ecology, nature of disposal, low energy requirement for processing and sustainability. The current research emphases on evaluating and determining the best extraction methods to process and treat cyperus Dichrostachus A.Rich plant in order to make the fiber suitable for variety of applications. Cyperus Dichrostachus A.Rich plant was treated with two conditions (cold and warm conditions) using statistically planned tests. Process conditions were optimised using central composite design methodology with the experimental design. Under optimised conditions, the strength and fiber yield of CDA fibers were significantly compared. The strength and fiber yield of the fiber was at maximized with optimized conditions and use for valorisation applications.


1998 ◽  
Vol 4 (S2) ◽  
pp. 834-835
Author(s):  
Gisela Buschle-Diller

Plant fibers such as cotton, hemp and flax have been cultivated for textile purposes for thousands of years. These natural fibers play an important role in daily life as apparel fibers since they provide unique comfort properties unsurpassed by synthetic fibers. However, their use is not limited to the apparel sector. In recent years the market share of consumer textiles and industrial products made from all kinds of natural fibers has tremendously increased as they present a valuable source of renewable raw materials. Investigating their surface features by microscopic techniques is important to control the performance of the desired end-product. Processing steps involving heat, light or exposure to chemicals might have a significant impact on the specific surface properties of a fiber whether or not this was originally intended. Scanning electron microscopy is therefore a very useful tool for the characterization of textile products to determine the effectiveness and eventual resulting damage from physical or chemical treatments.


Sign in / Sign up

Export Citation Format

Share Document