radius of influence
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 0)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 149
Author(s):  
Andy Louwyck ◽  
Alexander Vandenbohede ◽  
Dirk Libbrecht ◽  
Marc Van Van Camp ◽  
Kristine Walraevens

Empirical formulas to estimate the radius of influence, such as the Sichardt formula, occasionally appear in studies assessing the environmental impact of groundwater extractions. As they are inconsistent with fundamental hydrogeological principles, the term “radius of influence myth” is used by analogy with the water budget myth. Alternative formulations based on the well-known de Glee and Theis equations are presented, and the contested formula that estimates the radius of influence by balancing pumping and infiltration rate is derived from an asymptotic solution of an analytical model developed by Ernst in 1971. The transient state solution of this model is developed applying the Laplace transform, and it is verified against the finite-difference solution. Examining drawdown and total storage change reveals the relations between the presented one-dimensional radial flow solutions. The assumptions underlying these solutions are discussed in detail to show their limitations and to refute misunderstandings about their applicability. The discussed analytical models and the formulas derived from it to estimate the radius of influence cannot be regarded as substitutes for advanced modeling, although they offer valuable insights on relevant parameter combinations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey E. Harris

We studied the possible role of the subways in the spread of SARS-CoV-2 in New York City during late February and March 2020. Data on cases and hospitalizations, along with phylogenetic analyses of viral isolates, demonstrate rapid community transmission throughout all five boroughs within days. The near collapse of subway ridership during the second week of March was followed within 1–2 weeks by the flattening of COVID-19 incidence curve. We observed persistently high entry into stations located along the subway line serving a principal hotspot of infection in Queens. We used smartphone tracking data to estimate the volume of subway visits originating from each zip code tabulation area (ZCTA). Across ZCTAs, the estimated volume of subway visits on March 16 was strongly predictive of subsequent COVID-19 incidence during April 1–8. In a spatial analysis, we distinguished between the conventional notion of geographic contiguity and a novel notion of contiguity along subway lines. We found that the March 16 subway-visit volume in subway-contiguous ZCTAs had an increasing effect on COVID-19 incidence during April 1–8 as we enlarged the radius of influence up to 5 connected subway stops. By contrast, the March 31 cumulative incidence of COVID-19 in geographically-contiguous ZCTAs had an increasing effect on subsequent COVID-19 incidence as we expanded the radius up to three connected ZCTAs. The combined evidence points to the initial citywide dissemination of SARS-CoV-2 via a subway-based network, followed by percolation of new infections within local hotspots.


MAUSAM ◽  
2021 ◽  
Vol 49 (4) ◽  
pp. 439-442
Author(s):  
O. P. SINGH

Using the pressure profile in and around a vortex tube a simple relation for the radius of influence of the vortex has been derived. The results have been applied to assess the region of maximum devastation in a tornado. The analysis reveals that the occurrence of 'eye wall' region in a tropical cyclone is a hydrodynamical phenomenon.


2021 ◽  
Author(s):  
Jeffrey E Harris

We studied the possible role of the subways in the spread of SARS-CoV-2 in New York City during late February and March 2020. Data on cases and hospitalizations, along with phylogenetic analyses of viral isolates, demonstrate rapid community transmission throughout all five boroughs within days. The near collapse of subway ridership during the second week of March was followed within 1-2 weeks by the flattening of COVID-19 incidence curve. We observed persistently high entry into stations located along the subway line serving a principal hotspot of infection in Queens. We used smartphone tracking data to estimate the volume of subway visits originating from each zip code tabulation area (ZCTA). Across ZCTAs, the estimated volume of subway visits on March 16 was strongly predictive of subsequent COVID-19 incidence during April 1-8. In a spatial analysis, we distinguished between the conventional notion of geographic contiguity and a novel notion of contiguity along subway lines. We found that the March 16 subway-visit volume in subway-contiguous ZCTAs had an increasing effect on COVID-19 incidence during April 1-8 as we enlarged the radius of influence up to 5 connected subway stops. By contrast, the March 31 cumulative incidence of COVID-19 in geographically-contiguous ZCTAs had an increasing effect on subsequent COVID-19 incidence as we expanded the radius up to 3 connected ZCTAs. The combined evidence points to the initial citywide dissemination of SARS-CoV-2 via a subway-based network, followed by percolation of new infections within local hotspots.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4062
Author(s):  
Iñigo Escobal-Marcos ◽  
Martina-Inmaculada Álvarez-Fernández ◽  
María-Belén Prendes-Gero ◽  
Celestino González-Nicieza

Fractured rock masses below the water table are a problem in underground excavations because of their low strength and high permeability. Nowadays, these negative connotations can be reduced with techniques such as injection of cement, microcement, or resins grouts. These materials increase the rock mass cohesion while reducing the flow of water through the discontinuities. This paper describes the work carried out to design a waterproofing screen for a three-storey underground basement located in a building near the Bilbao estuary (Northern Spain) and with problems of water seepage from the river. First, a survey of the rock mass is carried out. This survey shows the presence of highly fractured zones and the variability of the permeability as functions of the fractures. Subsequently, the effect on permeability caused by the injection of cement grouts and microcement is studied by means of two pilot injection boreholes and eight control boreholes. Finally, a behavioural model is proposed to explain the heterogeneity observed in the radius of influence of the injection. As a result, a waterproofing screen with three types of treatment is designed: An ordinary treatment with cement grouts, an intensive treatment with microcement grouts, and an isolation treatment with cement-bentonite grouts.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongjiang Zhang ◽  
Benqing Yuan ◽  
Xingang Niu

Conventional hydraulic fracturing has several disadvantages, including a short effective extraction time and low fracture conductivity during long-term extraction. Aiming at overcoming these shortcomings, a similar simulation test of repeated hydraulic fracturing was conducted in this study, and the evolutionary rules regarding the injection water pressure and stress distribution of the coal seam roof during this repeated hydraulic fracturing were revealed. The research results show that after multiple hydraulic fracturing, the number of cracks in the coal seam and the range of fracturing influence have increased significantly. As the number of fracturing increases, the initial pressure required for cracking decreases. The highest water injection pressure of the first fracturing was 2.8 MPa, while the highest water injection pressures of the second and third fracturing were 2.7 MPa and 2.4 MPa, respectively. As the number of fracturing increases, the area of increased stress will continue to expand. After the first fracturing, the impact radius of fracturing is 100 cm. After the second fracturing, the radius of influence of fracturing expanded to 150 cm. When the third fracturing was over, the radius of influence of the fracturing expanded to approximately 250 cm. It can be seen that, compared with conventional hydraulic fracturing, repeated hydraulic fracturing shows better fracturing effect. The research results can be used as a basis for repeated hydraulic fracturing field tests to increase coal seam permeability.


Author(s):  
Dak Bahadur Khadka

In unconfined aquifer water flows in both horizontal and vertical direction when pumping. So its study during pumping action is more complex. Soil type, porosity, hydraulic conductivity and transmissivity are important parameters that control the specific yield, drawdown and radius of influence on aquifer while abstraction. Due to large extraction of water from the aquifer, the water table drops down and may lead to permanent depletion of yield capacity of aquifer. For practical understanding of water being pumped from aquifer and its impacts on water storage the easiest method is experimental approach .So therefore, this study was planned to carry out the well abstraction from unconfined aquifer of homogeneous sandy soil designed as physical model on rainfall simulator at hydraulic laboratory hall of Campus itself. The catchment dimension is 2.2 meter length, 1 meter width and 0.15 meter depth with impermeable base filled with fine sand as per specification. The simulator was adjusted to make horizontal aquifer. The experimental observations were carried out in two conditions, first was well abstraction with no rainfall after saturation and the second is with rainfall even after saturation condition obtained. The two wells were operated for the abstraction of water simultaneously so that the effect of one well to another could be studied. After observation and data collection, for the analysis of hydraulic conductivity Dupit model. Empirical model and relative effective porosity model (REPM) were used for the comparative study. Similarly the radius of influence was estimated by three models (weber,Kusakin and Sichardt).  For the estimation of transmissivity of the aquifer Thien model was used. Also the general equation (product of hydraulic conductivity and depth of aquifer) was used. Study showed the suitability of the available theories and governing equations for unconfined aquifer. The most important part of the study was to establish the correlation of drawdown and radius of influence with the time period of well abstraction. From the results the correlation coefficient for time and drawdown was of 90% and for time and radius of influence was 97%.


Author(s):  
Oluwaseun Adelaja ◽  
Tajalli Keshavarz ◽  
Godfrey Kyazze

In this study, tubular microbial fuel cells (MFCs) were inserted into phenanthrene-contaminated water-logged soil in order to evaluate their treatment efficiency and overall system performance within 60 days’ incubation period. At day 10, phenanthrene degradation rates were found to decrease with increasing distance from the anodes from 50-55 % at 2 cm to 38-40 % at 8 cm. Bromate (used as a catholyte) removal in both MFCs was about 80-95 % on average which is significantly higher than the open circuit controls (15-40 %) over the 60day period. Total chemical oxygen demand removal (72.8 %) in MFCs amended with surfactants was significantly higher than MFCs without surfactant (20 %). This suggests that surfactant addition may have enhanced bioavailability of not only phenanthrene, but other organic matter present in the soil. The outcomes of this work has demonstrated the simultaneous removal of phenanthrene (86%) and bromate (95%) coupled with concomitant bioelectricity generation (about 4.69 mWm-2) using MFC systems within a radius of influence (ROI) up to 8 cm. MFC technology may be used for in situ decontamination of soils due to its potential detoxification capacity and could be deployed directly as a prototype-MFC design in field applications.


Sign in / Sign up

Export Citation Format

Share Document