scholarly journals Response Characteristics of Coal-Like Material Subjected to Repeated Hydraulic Fracturing: An Evaluation Based on Real-Time Monitoring of Water Injection Pressure and Roof Stress Distribution

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongjiang Zhang ◽  
Benqing Yuan ◽  
Xingang Niu

Conventional hydraulic fracturing has several disadvantages, including a short effective extraction time and low fracture conductivity during long-term extraction. Aiming at overcoming these shortcomings, a similar simulation test of repeated hydraulic fracturing was conducted in this study, and the evolutionary rules regarding the injection water pressure and stress distribution of the coal seam roof during this repeated hydraulic fracturing were revealed. The research results show that after multiple hydraulic fracturing, the number of cracks in the coal seam and the range of fracturing influence have increased significantly. As the number of fracturing increases, the initial pressure required for cracking decreases. The highest water injection pressure of the first fracturing was 2.8 MPa, while the highest water injection pressures of the second and third fracturing were 2.7 MPa and 2.4 MPa, respectively. As the number of fracturing increases, the area of increased stress will continue to expand. After the first fracturing, the impact radius of fracturing is 100 cm. After the second fracturing, the radius of influence of fracturing expanded to 150 cm. When the third fracturing was over, the radius of influence of the fracturing expanded to approximately 250 cm. It can be seen that, compared with conventional hydraulic fracturing, repeated hydraulic fracturing shows better fracturing effect. The research results can be used as a basis for repeated hydraulic fracturing field tests to increase coal seam permeability.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shenglong Liu ◽  
Bingxiang Huang ◽  
Weiyong Lu ◽  
Haoze Li ◽  
Ding Li ◽  
...  

Hydraulic fracturing can improve the permeability of composite thin coal seam. Recently, characterizing hydraulic fracture (HF) propagation inside the coal seam and evaluating the permeability enhancement with HF extension remain challenging and crucial. In this work, based on the geological characteristics of the coal seam in a coal mine of the southwest China, the RFPA2D-Flow software is employed to simulate the HF propagation and its permeability-increasing effect in the composite thin coal seam, and a couple of outcomes were obtained. (1) Continuous propagation of the hydraulic microcrack-band is the prominent characteristic of HF propagation. With the increment of the injection-water pressure, HF generation in the composite thin coal seam can be divided into three stages: stress accumulation, stable fracture propagation, and unstable fracture propagation. (2) The hydraulic microcrack-band propagates continuously driven by the fluid-injection pressure. The microcrack-band not only cracks the coal seam but also fractures the gangue sandwiched between the coal seams. (3) The permeability in the composite thin coal seam increases significantly with the propagation of hydraulic microcrack-band. The permeability increases by 1~2 magnitudes after hydraulic fracturing. This study provides references to the field applications of hydraulic fracturing in the composite thin coal seam, such as optimizing hydraulic fracturing parameters, improving gas drainage, and safe-efficient mining.


Author(s):  
Ruslan Miftakhov ◽  
Igor Efremov ◽  
Abdulaziz S. Al-Qasim

Abstract The application of Artificial Intelligence (AI) methods in the petroleum industry gain traction in recent years. In this paper, Deep Reinforcement Learning (RL) is used to maximize the Net Present Value (NPV) of waterflooding by changing the water injection rate. This research is the first step towards showing that the use of pixel information for reinforcement learning provides many advantages, such as a fundamental understanding of reservoir physics by controlling changes in pressure and saturation without directly accounting for the reservoir petrophysical properties and wells. The optimization routine based on RL by pixel data is tested on the 2D model, which is a vertical section of the SPE 10 model. It has been shown that RL can optimize waterflooding in a 2D compressible reservoir with the 2-phase flow (oil-water). The proposed optimization method is an iterative process. In the first few thousands of updates, NPV remains in the baseline since it takes more time to converge from raw pixel data than to use classical well production/injection rate information. RL optimization resulted in improving the NPV by 15 percent, where the optimum scenario shows less watercut values and more stable production in contrast to baseline optimization. Additionally, we evaluated the impact of selecting the different action set for optimization and examined two cases where water injection well can change injection pressure with a step of 200 psi and 600 psi. The results show that in the second case, RL optimization is exploiting the limitation of the reservoir simulation engine and tries to imitate a cycled injection regime, which results in a 7% higher NPV than the first case.


2012 ◽  
Vol 170-173 ◽  
pp. 428-433 ◽  
Author(s):  
Dong Ming Guo ◽  
Hua Jun Xue ◽  
Li Juan Li ◽  
Jun Long Xue ◽  
Gui He Li

Rock burst is a common mine dynamic phenomenon in the world, and the research on bursting liability of coal and rock is the foundation of rock burst’s prevention and treatment. This paper has a research on bursting liability of coal and rock of 11-2 coal seam which is the main coal seam of Zhuji coal mine, and through the research and analysis of coal seam burst energy index(bursting energy index, elastic strain energy index, duration of dynamic fracture) and rock seam burst energy index(bending energy index), this paper given that seam and rock in deep mining section of Zhuji coal mine has bursting liability, put forward a series of countermeasures such as the previous water injection, hole-drilling method, blasting distressing to the coal seam with the impact disaster for deep mining in Zhuji coal mine.


2013 ◽  
Vol 734-737 ◽  
pp. 551-555
Author(s):  
Hai Feng Ma ◽  
Chuan Ming Li ◽  
Jia Zhuo Li

The paper studied the change of permeability of three different coal seam samples at different injection pressure by using the MYS-I type permeability measuring system of coal and rock samples, according to the problem of the coal permeability highly affected during the seepage process, and also researched the water pressure distribution at the pressure of 4 MPa, 8MPa, and 12MPa based on COMSOL Multiphysics. The results show the permeability of coal samples gradually increases with injection pressure increasing and meets a cubic polynomial variation. The injection pressure range obeys a distribution, water pressure gradually decreases with increasing distance from the hole wall at the constant pressure, the flow velocity also reduces. The injection pressure gradient and the effective range gradually increases with injection pressure increasing, the pressure gradient gradually decreases with increasing distance from the hole wall, the maximum coverage radius of water injection pressure range is about 9.5m.


2021 ◽  
Vol 11 (13) ◽  
pp. 5980
Author(s):  
Lucio Postrioti ◽  
Gabriele Brizi ◽  
Gian Marco Finori

Port water injection (PWI) is considered one of the most promising technologies to actively control the increased knock tendency of modern gasoline direct injection (GDI) engines, which are rapidly evolving with the adoption of high compression ratios and increased brake mean effective pressure levels in the effort to improve their thermal efficiency. For PWI technology, appropriately matching the spray evolution and the intake system design along with obtaining a high spray atomization quality, are crucial tasks for promoting water evaporation so as to effectively cool down the air charge with moderate water consumption and lubricant dilution drawbacks. In the present paper, a detailed experimental analysis of a low-pressure water spray is presented, covering a lack of experimental data on automotive PWI systems. Phase doppler anemometry and fast-shutter spray imaging allowed us to investigate the influence exerted by the injection pressure level and by the water temperature on spray drop size and global shape, obtaining a complete database to be used for the optimization of PWI systems. The obtained results evidence how significant benefits in terms of atomization quality can be obtained by adopting injection pressure and water temperature levels compliant with standard low injection pressure technologies.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1255-1259 ◽  
Author(s):  
Xue Xi Chen ◽  
Yan Ke Zhang ◽  
Yong Xu ◽  
Rui Qing Bi

According to the low intensity, good plasticity in soft coal seam, the effect of direct fracturing to increase permeability was not ideal, the new technology of hydraulic fracture soft coal rock was proposed, which increased coal seam permeability. Its technical principles and characteristics were researched. Water injection pressure was analyzed, including injection time, parameters of the technology and so on. Field application experiment and effect of inspection were conducted. The results showed that the concentration of gas extraction increased 4.3 times, and the gas extraction flow increased 6.2times. The technology has a good effect of fracturing and advantages in enlarging the released area and decreasing diffusion seepage resistance of coal seam. Most important, the technology has broad application prospects in soft coal seam.


2020 ◽  
Vol 185 ◽  
pp. 01004
Author(s):  
Liangwei Li

Aiming at the difficulty of gas drainage by drilling along the seam in soft coal seam, the permeability of coal seam was increased by hydraulic fracturing test in the field, and the permeability and gas drainage parameters of coal seam before and after fracturing were studied. The results show that: ① The fracture initiation pressure of 3# coal seam in Guojiahe coal mine is 15~20MPa. When the water injection is 30~40m3, the fracturing radius is 15m, when the water injection is 50 ~ 60m3, the fracturing radius can reach 20m, when the water injection reaches 70m3, the fracturing radius can reach 30m; ② Driven by high pressure water, the gas in the fractured area migrates to the unfractured area, and the gas content in the fractured area decreases; ③ The attenuation coefficient of natural gas flow after fracturing is reduced by 50% compared with that before fracturing, and the permeability coefficient of coal seam after fracturing is increased by 50 times compared with that of original area; ④ The recovery concentration after fracturing is much higher than that before fracturing.


2020 ◽  
Vol 7 (7) ◽  
pp. 41-48
Author(s):  
Galina I. Matniiazova ◽  
◽  
Mariia P. Khaidina ◽  

Introduction. Coalbed methane extraction increases the economic efficiency of coal mining being a main measure mitigating coal mining risks. Research aim was to assess the impact made by host rocks with different reservoir properties on coalbed methane production dynamics before and after hydraulic fracturing. Methodology. A coal seam model has been constructed using software systems; the coal seam has been represented as an integrated deposit of two minerals, coal and gas. Gas production scenarios with and without impact on the seam have been calculated as well. A model of a coal bed with a hydraulic fracture was constructed in application program package Petrel (Shlumberger). Results. The calculation results showed the development of gas migration from the coal matrix to the surrounding rock through the fracture system during gas production. The use of hydraulic fracturing has positive impact on the dynamics of gas production from coal seams. Hydraulic fracturing revealed the growth of desorbed gas migration into the host interlayers. Analysis of coal methane migration to the surrounding rock has shown that the host rock can be considered as a transportation route for coalbed methane production.


Sign in / Sign up

Export Citation Format

Share Document