scholarly journals Human Acellular Amniotic Matrix with Previously Seeded Umbilical Cord Mesenchymal Stem Cells Restores Endometrial Function in a Rat Model of Injury

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shan Wang ◽  
Cheng Shi ◽  
Xiaohui Cai ◽  
Yanbin Wang ◽  
Xi Chen ◽  
...  

Background. Abnormal endometrial repair after injury results in the formation of intrauterine adhesions (IUA) and a thin endometrium, which are key causes for implantation failure and infertility. Stem cell transplantation offers a potential alternative for some cases of severe Asherman’s syndrome that cannot be treated with surgery or hormonal therapy. Umbilical cord-derived mesenchymal stem cells (UCMSCs) have been reported to repair the damaged endometrium. However, there is no report on the effects of UCMSCs previously seeded on human acellular amniotic matrix (AAM) on endometrial injury. Methods. Absolute ethanol was injected into rat uteri to damage the endometrium. UCMSCs previously seeded on AAM were surgically transplanted. Using a variety of methods, the treatment response was assessed by endometrial thickness, endometrial biomarker expression, endometrial receptivity, cell proliferation, and inflammatory factors. Results. Endometrial thickness was markedly improved after UCMSC-AAM transplantation. The expression of endometrial biomarkers, namely, vimentin, cytokeratin, and integrin β3, in treated rats increased compared with untreated rats. In the UCMSC-AAM group, the VEGF expression decreased, whereas that of MMP9 increased compared with the injury group. Moreover, in the AAM group, the MMP9 expression increased. The expression of proinflammatory factors (IL-2, TNFα, and IFN-γ) in the UCMSC-AAM group decreased compared with the untreated group, whereas the expression of anti-inflammatory factors (IL-4, IL-10) increased significantly. Conclusions. UCMSC transplantation using AAM as the carrier can be applied to treat endometrial injury in rats. The successful preparation of lyophilized AAM provides the possibility of secondary infectious disease screening and amniotic matrix quality detection, followed by retrospective analysis. The UCMSC-AAM complex may promote the better application of UCMSCs on the treatment of injured endometrium.

2021 ◽  
Vol 11 (9) ◽  
pp. 1838-1843
Author(s):  
Xiaohong Zhou ◽  
Xuzhong Hao ◽  
Feifei He

To investigate whether exosomes (exo) derived from human umbilical cord mesenchymal stem cells (huMSCs) and microRNA (miRNA)-342 have a protective effect on severe acute pancreatitis (SAP). Human umbilical cord blood was collected to extract huMSC-exo. With sham-operated mice as control group (n = 10), the other mice were induced to SAP model (n = 20), while 10 of the SAP mice received treatment with huMSC-exo. ELISA was performed to determine amylase and TAP level as well as inflammatory factors and HE staining to evaluate pathological changes of pancreatic tissue. The expression of miR-342 and Shh, Ptchl, and Smo in the Hh signal pathway was detected using RT-qPCR. The expression of miR-342 and the mRNA expression of Shh, Ptchl, and Smo was higher than that in model group (p < 0.05). The level of serum amylase, trypsinogen, and IFN-γ,Fasl, and IL-6 was upregulated in pancreas tissues of SAP mice relative to healthy mice, but their levels were decreased upon treatment with huMSC-exo and slightly higher than those of the control group, just not significantly. Collectively, the huMSC-exo may activate the Hh signaling pathway by regulating the expression of miR-342 increasing the expression of Shh, Ptchl, and Smo, and thereby healing of damaged pancreatic tissues in SAP.


2019 ◽  
Vol 47 (5) ◽  
pp. 2135-2144
Author(s):  
Xiaoyang Yang ◽  
Shufang Zhang ◽  
Denggao Huang ◽  
Zhiming Wang ◽  
Xiaoxia Chen ◽  
...  

Hemophagocytic lymphohistiocytosis (HLH) is an aggressive and life-threatening syndrome of excessive immune activation. Mesenchymal stem cells (MSCs) generate an immunosuppressive microenvironment by secreting cytokines and have been used to treat autoimmune diseases. We report the first case of refractory secondary HLH treated with umbilical cord MSCs. A 52-year-old Chinese female patient with a history of type 2 diabetes was diagnosed with refractory secondary HLH based upon the HLH-2004 protocol and was treated by infusion of third-party umbilical cord MSCs (1.4 × 106 cells/kg of body weight, 70 × 106 cells in total) from the stem cell bank of Hainan Province. Body temperature recovered to normal on the sixth day after infusion with umbilical cord MSCs, and the levels of inflammatory factors macrophage inflammatory protein (MIP)-1α, interleukin (IL)-12p70, stromal cell-derived factor (SDF)-1α, and IL-7 decreased significantly. Blood glucose levels were significantly lower than before treatment, and the amount of insulin needed was significantly reduced. Umbilical cord MSCs can relieve the symptoms of refractory secondary HLH and have a therapeutic effect on insulin resistance in type 2 diabetes mellitus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanling Zhang ◽  
Libing Shi ◽  
Xiaona Lin ◽  
Feng Zhou ◽  
Liaobing Xin ◽  
...  

Abstract Background Unresponsive thin endometrium caused by Asherman syndrome (AS) is the major cause of uterine infertility. However, current therapies are ineffective. This study is to evaluate the effect of transplantation with collagen scaffold/umbilical cord mesenchymal stem cells (CS/UC-MSCs) on this refractory disease. Methods Eighteen infertile women with unresponsive thin endometrium, whose frozen–thawed embryo transfers (FETs) were cancelled due to reduced endometrial thickness (ET ≤ 5.5 mm), were enrolled in this before and after self-control prospective study. Hysteroscopic examination was performed to confirm no intrauterine adhesions, then twenty million UC-MSCs loaded onto a CS were transplanted into the uterine cavity in two consecutive menstrual cycles. Then uterine cavity was assessed through hysteroscopy after two transplants. FETs were performed in the following cycle. Pregnancy outcomes were followed up. Endometrial thickness, uterine receptivity and endometrial angiogenesis, proliferation and hormone response were compared before and after treatment. Results Sixteen patients completed the study. No treatment-related serious adverse events occurred. Three months after transplantation, the average ET increased from 4.08 ± 0.26 mm to 5.87 ± 0.77 mm (P < 0.001). Three of 15 patients after FET got pregnant, of whom 2 gave birth successfully and 1 had a miscarriage at 25 weeks’ gestation. One of 2 patients without FET had a natural pregnancy and gave birth normally after transplantation. Immunohistochemical analysis showed increased micro-vessel density, upregulated expression of Ki67, estrogen receptor alpha, and progesterone receptor, indicating an improvement in endometrial angiogenesis, proliferation, and response to hormones. Conclusion CS/UC-MSCs is a promising and potential approach for treating women with unresponsive thin endometrium caused by AS. Trial registration ClinicalTrials.gov NCT03724617. Registered on 26 October 2018—prospectively registered, https://register.clinicaltrials.gov/


Lupus ◽  
2019 ◽  
Vol 29 (2) ◽  
pp. 126-135
Author(s):  
B Zheng ◽  
P Zhang ◽  
L Yuan ◽  
R K Chhetri ◽  
Y Guo ◽  
...  

Objectives The present study aimed to explore the effect of umbilical cord mesenchymal stem cells (UC-MSCs) on the modulation of T lymphocytes from system lupus erythematosus (SLE) patients and the possible mechanism. Methods A total of 24 hospitalized SLE patients and 28 healthy individuals were enrolled. T lymphocytes were sorted using Miltenyi magnetic beads. After the addition of recombinant human interleukin (IL)-2 and CD3CD28 T-cell activator, cells were loaded onto six-well plates pre-inoculated or not with UC-MSCs for 1 week of culture. The supernatants were collected for testing inflammatory factors by enzyme-linked immunosorbent assay. Meanwhile, T lymphocytes were collected to assess the expression levels of genes, proteins in relation to SLE and miR-181a by polymerase chain reaction and Western blot. Results Compared with T lymphocytes cultured alone, interferon-γ, IL-4, IL-6 and IL-10 levels were significantly decreased in T lymphocytes from SLE patients co-cultured with UC-MSCs. In addition, the gene and protein expression levels of TNF alpha, osteopontin and nuclear factor-kappa B in T lymphocytes were significantly decreased, while miR-181a expression was markedly elevated ( p < 0.05 or 0.008). Conclusion UC-MSCs have showed certain immunomodulatory and inhibitory effects in vitro on T lymphocytes from SLE patients, which could potentially be a beneficial treatment of the disease. UC-MSCs may up-regulate miR-181a and down-regulate inflammation-related gene expression.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Lu Zhang ◽  
Ying Li ◽  
Yi-Chao Dong ◽  
Chun-Yi Guan ◽  
Shi Tian ◽  
...  

AbstractThe endometrium plays a critical role in embryo implantation and pregnancy, and a thin uterus is recognized as a key factor in embryo implantation failure. Umbilical cord mesenchymal stem cells (UC-MSCs) have attracted interest for the repair of intrauterine adhesions. The current study investigated the repair of thin endometrium in rats using the UC-MSCs and the mechanisms involved. Rats were injected with 95% ethanol to establish a model of thin endometrium. The rats were randomly divided into normal, sham, model, and UC-MSCs groups. Endometrial morphological alterations were observed by hematoxylin–eosin staining and Masson staining, and functional restoration was assessed by testing embryo implantation. The interaction between UC-MSCs and rat endometrial stromal cells (ESCs) was evaluated using a transwell 3D model and immunocytochemistry. Microarray mRNA and miRNA platforms were used for miRNA-mRNA expression profiling. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were performed to identify the biological processes, molecular functions, cellular components, and pathways of endometrial injury and UC-MSCs transplantation repair and real-time quantitative reverse transcription PCR (qRT-PCR) was performed to further identify the expression changes of key molecules in the pathways. Endometrium thickness, number of glands, and the embryo implantation numbers were improved, and the degree of fibrosis was significantly alleviated by UC-MSCs treatment in the rat model of thin endometrium. In vitro cell experiments showed that UC-MSCs migrated to injured ESCs and enhanced their proliferation. miRNA microarray chip results showed that expression of 45 miRNAs was downregulated in the injured endometrium and upregulated after UC-MSCs transplantation. Likewise, expression of 39 miRNAs was upregulated in the injured endometrium and downregulated after UC-MSCs transplantation. The miRNA-mRNA interactions showed the changes in the miRNA and mRNA network during the processes of endometrial injury and repair. GO and KEGG analyses showed that the process of endometrial injury was mainly attributed to the decomposition of the extracellular matrix (ECM), protein degradation and absorption, and accompanying inflammation. The process of UC-MSCs transplantation and repair were accompanied by the reconstruction of the ECM, regulation of chemokines and inflammation, and cell proliferation and apoptosis. The key molecules involved in ECM-receptor interaction pathways were further verified by qRT-PCR. Itga1 and Thbs expression decreased in the model group and increased by UC-MSCs transplantation, while Laminin and Collagen expression increased in both the model group and MSCs group, with greater expression observed in the latter. This study showed that UC-MSCs transplantation could promote recovery of thin endometrial morphology and function. Furthermore, it revealed the expression changes of miRNA and mRNA after endometrial injury and UC-MSCs transplantation repair processed, and signaling pathways that may be involved in endometrial injury and repair.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jianye Wang ◽  
Ruomeng Hu ◽  
Qiong Xing ◽  
Xinghao Feng ◽  
Xiaohua Jiang ◽  
...  

The human endometrial stromal cells (hEndoSCs) could maintain endometrial homeostasis and play a critical role in repairing endometrial injury. Mesenchymal stem cells (MSCs) significantly increase the proliferation of damaged hEndoSCs and protect them from apoptosis. Recent studies indicated that exosomes derived from stem cells could be recruited to damaged tissues for regeneration, which exhibit the potential for stem cell therapy as therapeutic vectors. In this study, we isolated human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) and investigated the effects of hUCMSC-Exos on mifepristone-induced hEndoSC injury. Exosome uptake and cell proliferation as well as cell apoptosis of damaged hEndoSCs treated with hUCMSC-Exos were detected. We also assessed the expression of apoptosis-related proteins and the PTEN/AKT signaling pathway. We found hUCMSC-Exos improved the proliferation of damaged hEndoSCs and protected hEndoSCs from the mifepristone-induced apoptosis. hUCMSC-Exos upregulated Bcl-2 level as well as downregulated Cleaved Caspase-3 level and activated the PTEN/AKT signaling pathway to regulate the proliferation and antiapoptosis. These results indicated hUCMSC-Exos protected hEndoSCs from mifepristone-induced apoptosis and played an active role in repairing the damaged hEndoSCs through the PTEN/AKT signaling pathway in vitro. hUCMSC-Exos may hold great promise in the cell-free therapy of endometrial injury.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qin Huang ◽  
Meng Gong ◽  
Tuantuan Tan ◽  
Yunong Lin ◽  
Yan Bao ◽  
...  

AbstractExosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) expressing microRNAs have been highlighted in human diseases. However, the detailed molecular mechanism of hucMSCs-derived exosomal miR-18b-3p on preeclampsia (PE) remains further investigation. We aimed to investigate the effect of exosomes and miR-18b-3p/leptin (LEP) on occurrence of PE. The morphology of the hucMSC and hucMSC-exosomes (Exos) was identified. The exosomes were infected with different lentivirus expressing miR-18b-3p to explore the role of miR-18b-3p in PE. The PE rat model was established by intraperitoneal injection of N-nitro-l-arginine methyl ester. The expression of LEP and miR-18b-3p was tested in PE rat placenta tissues. Also, the effect of exosomes on LEP and miR-18b-3p expression was detected. The systolic blood pressure (SBP), proteinuria, inflammatory factors, the weight of fetal rat and placenta and cell apoptosis in PE rats were detected. Finally, the relationship between miR-18b-3p and LEP was verified using dual-luciferase reporter gene assay and RNA pull-down assay. Exosomes, restoring miR-18b-3p or inhibiting LEP reduced SBP and proteinuria of PE rats as well as increased the weight of fetal rat and placenta, decreased serum levels of inflammatory factors as well as suppressed apoptotic cells of PE rats, exerting a suppressive effect on PE progression. miR-18b-3p was decreased and LEP was increased in placenta tissues of PE rats. LEP was the direct target gene of miR-18b-3p. Upregulation of miR-18b-3p or treatment of the exosomes suppressed LEP expression and reduced PE occurrence, while downregulation of miR-18b-3p had contrary effects. Downregulated LEP reversed the effect of miR-18b-3p reduction on PE rats. HucMSCs-derived exosomal miR-18b-3p targets LEP to participate in the occurrence and development of PE. This study may provide a novel theoretical basis for the mechanism and investigation of PE.


Sign in / Sign up

Export Citation Format

Share Document