scholarly journals Simple Patch Antenna with Filtering Function Using Two U-Slots

2021 ◽  
Vol 21 (5) ◽  
pp. 425-429
Author(s):  
Youngje Sung

In this study, two U-slots of different sizes are used to combine the filtering function with a patch antenna. The U-shaped slots are etched into the patch, and currents in the opposite direction exist around these slots. Therefore, the currents cancel each other out, and a radiation null is formed. As a result, two radiation nulls are implemented on the left and right sides of the passband. To demonstrate the novelty of the proposed concept, a filtering patch antenna with a center frequency of 3.21 GHz and a 10 dB impedance bandwidth of 19.9% is designed and fabricated. High suppression levels of 25.33 and 19.32 dB in the lower and higher stopbands, respectively, are achieved. Therefore, a sharp band skirt and good selectivity are exhibited in the boresight gain response. The two radiation nulls are located at 2.4 and 3.7 GHz and can be independently adjusted.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjiu Li ◽  
Long Li ◽  
Xiwang Dai ◽  
Cheng Zhu ◽  
Feifei Huo ◽  
...  

A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC) technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (aboutλ/25 at 2.45 GHz) due to the shorted pin. The package is mounted on a 44 × 44 mm2ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth(S11< -10 dB)is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.


2021 ◽  
Vol 21 (1) ◽  
pp. 8-14
Author(s):  
Deok Kyu Kong ◽  
Jaesik Kim ◽  
Daewoong Woo ◽  
Young Joong Yoon

A modified proximity-coupled microstrip patch antenna with broad impedance bandwidth is proposed by incorporating proximity-coupled patch antenna into the rectangular open-ended microstrip feed line on a cavity structure. First we design a proximity-coupled microstrip antenna to have a wide bandwidth in the lower band centered at 7 GHz using a cavity-backed ground. To broaden the bandwidth of the antenna to the upper band, we then apply a rectangular open-ended microstrip feed line, adjusting the relative position to the cavity to generate an additional resonance close to 10 GHz. The combination of lower and upper band design results in a broadband antenna with dimensions of 30 mm × 30 mm × 9 mm (0.9λ<sub>0</sub> × 0.9λ<sub>0</sub> × 0.27λ<sub>0</sub>) is designed where λ<sub>0</sub> corresponds to the free space wavelength at a center frequency of 9 GHz. The measurement results verify the broad impedance bandwidth (VSWR ≤ 2) of the antenna at 77% (5.6–12.6 GHz) while the broadside gain is maintained between 6 dBi and 8 dBi within the operational broad bandwidth.


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Chai-Eu Guan ◽  
Takafumi Fujimoto

This paper describes a compact patch antenna intended for medical body area network. The antenna is fed using a proximity coupling scheme to support the antenna that radiates in the free space and on the human body at the 2.45 GHz ISM band. The conductor plane is placed 2 mm or 0.0163λ0 (λ0 is free space wavelength at 2.45 GHz) below the antenna to reduce backward radiation to the human body. Separation distance must be kept above 2 mm, otherwise, gain of the proposed antenna decreases when antenna is situated on the human body. The L-shape feed line is introduced to overcome impedance mismatch caused by the compact structure. The coupling gap between the proposed antenna and the length of the L-shape feed line are optimized to generate dual resonances mode for wide impedance bandwidth. Simulation results show that specific absorption rate (SAR) of the proposed antenna with L-shape feed line is lower than conventional patch antenna with direct microstrip feed line. The proposed antenna achieves impedance bandwidth of 120 MHz (4.89%) at the center frequency of 2.45 GHz. The maximum gain in the broadside direction is 6.2 dBi in simulation and 5.09 dBi in measurement for antenna in the free space. Wide impedance bandwidth and radiation patterns insensitive to the presence of human body are achieved, which meets the requirement of IoT-based wearable sensor.


2014 ◽  
Vol 787 ◽  
pp. 352-356
Author(s):  
Zhi Hong Cheng ◽  
Feng Zhang ◽  
An Ping Huang ◽  
Zhi Song Xiao

In this paper, a novel composite of magneto-dielectric mixture Fe3O4/TiO2 filled polymer PTFE was synthesized for a compact antenna application. Magnetic permeability, dielectric permittivity and related loss were measured and optimized. A planar patch antenna performance based on these composites with a center frequency at 1 GHz was simulated. The simulated antenna performances such as impedance bandwidth and radiation efficiency indicated that the antenna fabricated by this proposed composite could exhibit a better electrical property than that of conventional antenna printed on dielectric material.


2016 ◽  
Vol 12 (2) ◽  
pp. 122 ◽  
Author(s):  
Prakash K. C ◽  
Vinesh P. V ◽  
Vivek R ◽  
Mohammad Ameen ◽  
Vasudevan K

A compact single feed circularly polarized microstrip patch antenna for RFID applications is proposed. Antenna geometry includes a regular hexagon shaped patch with a polygonal slot embedded at the centre. The slot accounts for circular polarization and an area reduction of 22.5 %. It is fabricated on FR4 substrate with dielectric constant 4.4 and size 50 mm x 50 mm x 1.6 mm. The measured results include 10dB impedance bandwidth of 5.5 % at the center frequency of 2.42 GHz, a return loss of 32 dB, minimum axial ratio of 1.82 dB, axial ratio bandwidth of 7.5%, gain of 4.9 dBi with a broadside radiation characteristic for the RHCP antenna. These results are well in tune with the simulated results and the proposed design is suitable for RFID reader antenna applications.


Frequenz ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alka Verma ◽  
Anil Kumar Singh ◽  
Neelam Srivastava ◽  
Shilpee Patil ◽  
Binod Kumar Kanaujia

AbstractA 3 × 3 slotted circular Electromagnetic Band gap based Metasurface (SCEBG-MS) has been presented in this article, which enhances the performance of a circularly polarized (CP) patch antenna by improving its impedance bandwidth, axial ratio bandwidth and gain. The proposed antenna is having a low profile of 0.065 λo (λo is the free-space wavelength at center frequency of 6.16 GHz) with ground size selection of 30 × 30 mm. The prototype antenna achieves a measured −10 dB impedance bandwidth of 37% (5.02–7.30 GHz) and measured 3-dB axial ratio bandwidth of 5.9% (5.24–5.56 GHz). Furthermore, the antenna yields a good peak gain of 6.6 dBic in the CP bandwidth which makes it a promising candidate for Wireless Local Area Network (WLAN) applications. Experimental results obtained from the fabricated prototype closely matched with the simulated results.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preet Kaur ◽  
Pravin R. Prajapati

Abstract A bilayer split-ring chiral metamaterial converts the linearly polarized wave, into a nearly perfect left or right-handed circularly polarized wave. The proposed antenna is intended to operate at center frequency of 5.80 GHz with switchable polarization capability. The polarization re-configurability is achieved by electronically switching of two PIN-diode pairs, which are embedded into bilayer split-ring Chiral Metamaterial. The optimized length of rectangular patch is 16 mm and width is 12.1 mm. Two types of radiation characteristics offered by the proposed antenna; left hand circularly polarized in mode 1 and right hand circularly polarized in mode 2. Measured results show that its impedance bandwidth is 155 MHz from 5.70 to 5.855 GHz for both mode 1 and mode 2. The measured axial-ratio bandwidth is 100 MHz from 5.75 to 5.85 GHz for mode 1 and 110 MHz from 5.73 to 5.84 GHz for mode 2. Antenna has LHCP gain of 2.52 dBi and RHCP gain of −23 dBi in mode 1. RHCP gain of 2 dBi and polarization purity of about −20 dBi is obtained in mode 2. The proposed antenna has simple structure, low cost and it has potential application in field of wireless communication (i.e., WiMax, WLAN etc.).


Author(s):  
Mahmoud A. Abdalla ◽  
Mohamed El Atrash ◽  
Ahmed A. Abdel Aziz ◽  
Mohamed I. Abdelnaser

Abstract This paper presents a compact dual-band filtering antenna without extra employing of filter structures. The antenna is designed using a planar dual-composite right/left-handed (D-CRLH) transmission line unit cell, where the filtering function is achieved through current cancellation between the D-CRLH resonators. The antenna is designed to function at 3.0 and 5.1 GHz, which can serve different WLAN applications. The antenna is a co-planar waveguide fed with a very compact size of only 30 × 16 mm2. Compared to the conventional patch antenna, the antenna size is only 17% at 3.0 GHz and 31% at 5.1 GHz. Despite the small size, the antenna preserves a good omni-directional radiation pattern at the two resonant frequencies with a measured realized gain of 2 and 2.7 dB, respectively. At the stopband in-between the two resonant bands, the reflection coefficient is almost 0 dB at 4.25 GHz and complete non-radiation is proved with a −11 dB measured realized gain. The different antenna filtering functions are verified by full-wave simulation and measurements.


Sign in / Sign up

Export Citation Format

Share Document