scholarly journals Retrograde Intraflagellar Transport Mutants Identify Complex A Proteins With Multiple Genetic Interactions in Chlamydomonas reinhardtii

Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 885-896 ◽  
Author(s):  
Carlo Iomini ◽  
Linya Li ◽  
Jessica M. Esparza ◽  
Susan K. Dutcher

The intraflagellar transport machinery is required for the assembly of cilia. It has been investigated by biochemical, genetic, and computational methods that have identified at least 21 proteins that assemble into two subcomplexes. It has been hypothesized that complex A is required for retrograde transport. Temperature-sensitive mutations in FLA15 and FLA17 show defects in retrograde intraflagellar transport (IFT) in Chlamydomonas. We show that IFT144 and IFT139, two complex A proteins, are encoded by FLA15 and FLA17, respectively. The fla15 allele is a missense mutation in a conserved cysteine and the fla17 allele is an in-frame deletion of three exons. The flagellar assembly defect of each mutant is rescued by the respective transgenes. In fla15 and fla17 mutants, bulges form in the distal one-third of the flagella at the permissive temperature and this phenotype is also rescued by the transgenes. These bulges contain the complex B component IFT74/72, but not α-tubulin or p28, a component of an inner dynein arm, which suggests specificity with respect to the proteins that accumulate in these bulges. IFT144 and IFT139 are likely to interact with each other and other proteins on the basis of three distinct genetic tests: (1) Double mutants display synthetic flagellar assembly defects at the permissive temperature, (2) heterozygous diploid strains exhibit second-site noncomplemention, and (3) transgenes confer two-copy suppression. Since these tests show different levels of phenotypic sensitivity, we propose they illustrate different gradations of gene interaction between complex A proteins themselves and with a complex B protein (IFT172).

2012 ◽  
Vol 199 (1) ◽  
pp. 151-167 ◽  
Author(s):  
Benjamin D. Engel ◽  
Hiroaki Ishikawa ◽  
Kimberly A. Wemmer ◽  
Stefan Geimer ◽  
Ken-ichi Wakabayashi ◽  
...  

The maintenance of flagellar length is believed to require both anterograde and retrograde intraflagellar transport (IFT). However, it is difficult to uncouple the functions of retrograde transport from anterograde, as null mutants in dynein heavy chain 1b (DHC1b) have stumpy flagella, demonstrating solely that retrograde IFT is required for flagellar assembly. We isolated a Chlamydomonas reinhardtii mutant (dhc1b-3) with a temperature-sensitive defect in DHC1b, enabling inducible inhibition of retrograde IFT in full-length flagella. Although dhc1b-3 flagella at the nonpermissive temperature (34°C) showed a dramatic reduction of retrograde IFT, they remained nearly full-length for many hours. However, dhc1b-3 cells at 34°C had strong defects in flagellar assembly after cell division or pH shock. Furthermore, dhc1b-3 cells displayed altered phototaxis and flagellar beat. Thus, robust retrograde IFT is required for flagellar assembly and function but is dispensable for the maintenance of flagellar length. Proteomic analysis of dhc1b-3 flagella revealed distinct classes of proteins that change in abundance when retrograde IFT is inhibited.


2005 ◽  
Vol 16 (8) ◽  
pp. 3810-3820 ◽  
Author(s):  
Mark S. Miller ◽  
Jessica M. Esparza ◽  
Andrew M. Lippa ◽  
Fordyce G. Lux ◽  
Douglas G. Cole ◽  
...  

The Chlamydomonas anterograde intraflagellar transport motor, kinesin-2, is isolated as a heterotrimeric complex containing two motor subunits and a nonmotor subunit known as kinesin-associated polypeptide or KAP. One of the two motor subunits is encoded by the FLA10 gene. The sequence of the second motor subunit was obtained by mass spectrometry and sequencing. It shows 46.9% identity with the Fla10 motor subunit and the gene maps to linkage group XII/XIII near RPL9. The temperature-sensitive flagellar assembly mutants fla1 and fla8 are linked to this kinesin-2 motor subunit. In each strain, a unique single point mutation gives rise to a unique single amino acid substitution within the motor domain. The fla8 strain is named fla8-1 and the fla1 strain is named fla8-2. The fla8 and fla10 alleles show a chromosome loss phenotype. To analyze this chromosome loss phenotype, intragenic revertants of fla8-1, fla8-2, and fla10-14 were generated. The analysis of the mutants and the revertants demonstrates the importance of a pocket in the amino terminus of these motor subunits for both motor activity and for a novel, dominant effect on the fidelity of chromosome segregation.


2002 ◽  
Vol 184 (3) ◽  
pp. 771-776 ◽  
Author(s):  
Frank E. Dailey ◽  
Robert M. Macnab

ABSTRACT Flagellar assembly requires the expression of a large number of flagellum-specific genes. However, mutations in a number of other genes in Salmonella and Escherichia coli have been shown to have pleiotropic effects that affect flagellar assembly. FlgH (the L-ring subunit of the flagellar basal body) is a lipoprotein whose modification is important for L-ring assembly. We therefore tested whether the lack of motility of Salmonella mutants defective in lipoprotein biogenesis is a result of inability to modify FlgH. Our results show that temperature-sensitive apolipoprotein N-acyltransferase [lnt(Ts)] mutants are nonflagellate at 42°C. However, the flagellar assembly defect occurs at a much earlier step in the pathway than L-ring assembly. These mutants failed to assemble even an MS ring, presumably because of the observed decrease in transcription of fliF. In contrast, temperature-sensitive diacylglycerol transferase [lgt(Ts)] mutants were motile at 42°C, provided the strains carried an lpp (Braun lipoprotein) mutation to permit growth. We have isolated second-site mutants from an lgt(Ts) lpp + strain that grow but are nonflagellate at 42°C. Thus, lipoprotein biogenesis is a factor that is important for flagellar assembly.


2017 ◽  
Vol 28 (9) ◽  
pp. 1208-1222 ◽  
Author(s):  
Katsutoshi Mizuno ◽  
Roger D. Sloboda

Changes in protein by posttranslational modifications comprise an important mechanism for the control of many cellular processes. Several flagellar proteins are methylated on arginine residues during flagellar resorption; however, the function is not understood. To learn more about the role of protein methylation during flagellar dynamics, we focused on protein arginine methyltransferases (PRMTs) 1, 3, 5, and 10. These PRMTs localize to the tip of flagella and in a punctate pattern along the length, very similar, but not identical, to that of intraflagellar transport (IFT) components. In addition, we found that PRMT 1 and 3 are also highly enriched at the base of the flagella, and the basal localization of these PRMTs changes during flagellar regeneration and resorption. Proteins with methyl arginine residues are also enriched at the tip and base of flagella, and their localization also changes during flagellar assembly and disassembly. PRMTs are lost from the flagella of fla10-1 cells, which carry a temperature-sensitive mutation in the anterograde motor for IFT. The data define the distribution of specific PRMTs and their target proteins in flagella and demonstrate that PRMTs are cargo for translocation within flagella by the process of IFT.


1998 ◽  
Vol 143 (6) ◽  
pp. 1591-1601 ◽  
Author(s):  
Gianni Piperno ◽  
Edward Siuda ◽  
Scott Henderson ◽  
Margarethe Segil ◽  
Heikki Vaananen ◽  
...  

A microtubule-based transport of protein complexes, which is bidirectional and occurs between the space surrounding the basal bodies and the distal part of Chlamydomonas flagella, is referred to as intraflagellar transport (IFT). The IFT involves molecular motors and particles that consist of 17S protein complexes. To identify the function of different components of the IFT machinery, we isolated and characterized four temperature-sensitive (ts) mutants of flagellar assembly that represent the loci FLA15, FLA16, and FLA17. These mutants were selected among other ts mutants of flagellar assembly because they displayed a characteristic bulge of the flagellar membrane as a nonconditional phenotype. Each of these mutants was significantly defective for the retrograde velocity of particles and the frequency of bidirectional transport but not for the anterograde velocity of particles, as revealed by a novel method of analysis of IFT that allows tracking of single particles in a sequence of video images. Furthermore, each mutant was defective for the same four subunits of a 17S complex that was identified earlier as the IFT complex A. The occurrence of the same set of phenotypes, as the result of a mutation in any one of three loci, suggests the hypothesis that complex A is a portion of the IFT particles specifically involved in retrograde intraflagellar movement.


2001 ◽  
Vol 153 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Carlo Iomini ◽  
Veronica Babaev-Khaimov ◽  
Massimo Sassaroli ◽  
Gianni Piperno

We used an improved procedure to analyze the intraflagellar transport (IFT) of protein particles in Chlamydomonas and found that the frequency of the particles, not only the velocity, changes at each end of the flagella. Thus, particles undergo structural remodeling at both flagellar locations. Therefore, we propose that the IFT consists of a cycle composed of at least four phases: phases II and IV, in which particles undergo anterograde and retrograde transport, respectively, and phases I and III, in which particles are remodeled/exchanged at the proximal and distal end of the flagellum, respectively. In support of our model, we also identified 13 distinct mutants of flagellar assembly (fla), each defective in one or two consecutive phases of the IFT cycle. The phase I-II mutant fla10-1 revealed that cytoplasmic dynein requires the function of kinesin II to participate in the cycle. Phase I and II mutants accumulate complex A, a particle component, near the basal bodies. In contrast, phase III and IV mutants accumulate complex B, a second particle component, in flagellar bulges. Thus, fla mutations affect the function of each complex at different phases of the cycle.


1998 ◽  
Vol 141 (4) ◽  
pp. 993-1008 ◽  
Author(s):  
Douglas G. Cole ◽  
Dennis R. Diener ◽  
Amy L. Himelblau ◽  
Peter L. Beech ◽  
Jason C. Fuster ◽  
...  

We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979–992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1561-1576
Author(s):  
Neil Macpherson ◽  
Vivien Measday ◽  
Lynda Moore ◽  
Brenda Andrews

Abstract In Saccharomyces cerevisiae, the Swi6 protein is a component of two transcription factors, SBF and MBF, that promote expression of a large group of genes in the late G1 phase of the cell cycle. Although SBF is required for cell viability, SWI6 is not an essential gene. We performed a synthetic lethal screen to identify genes required for viability in the absence of SWI6 and identified 10 complementation groups of swi6-dependent lethal mutants, designated SLM1 through SLM10. We were most interested in mutants showing a cell cycle arrest phenotype; both slm7-1 swi6Δ and slm8-1 swi6Δ double mutants accumulated as large, unbudded cells with increased 1N DNA content and showed a temperature-sensitive growth arrest in the presence of Swi6. Analysis of the transcript levels of cell cycle-regulated genes in slm7-1 SWI6 mutant strains at the permissive temperature revealed defects in regulation of a subset of cyclin-encoding genes. Complementation and allelism tests showed that SLM7 is allelic with the TAF17 gene, which encodes a histone-like component of the general transcription factor TFIID and the SAGA histone acetyltransferase complex. Sequencing showed that the slm7-1 allele of TAF17 is predicted to encode a version of Taf17 that is truncated within a highly conserved region. The cell cycle and transcriptional defects caused by taf17slm7-1 are consistent with the role of TAFIIs as modulators of transcriptional activation and may reflect a role for TAF17 in regulating activation by SBF and MBF.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1251-1264
Author(s):  
Ekaterina L Grishchuk ◽  
James L Howe ◽  
J Richard McIntosh

Abstract The growth of several mitotic mutants of Schizosaccharomyces pombe, including nuc2-663, is inhibited by the protease inhibitor N-Tosyl-L-Phenylalanine Chloromethyl Ketone (TPCK). Because nuc2+ encodes a presumptive component of the Anaphase Promoting Complex, which is required for the ubiquitin-dependent proteolysis of certain proteins during exit from mitosis, we have used sensitivity to TPCK as a criterion by which to search for novel S. pombe mutants defective in the anaphase-promoting pathway. In a genetic screen for temperature-sensitive mitotic mutants that were also sensitive to TPCK at a permissive temperature, we isolated three tsm (TPCK-sensitive mitotic) strains. Two of these are alleles of cut1+, but tsm1-512 maps to a novel genetic location. The tsm1-512 mutation leads to delayed nuclear division at restrictive temperatures, apparently as a result of an impaired ability to form a metaphase spindle. After shift of early G2 cells to 36°, tsm1-512 arrests transiently in the second mitotic division and then exits mitosis, as judged by spindle elongation and septation. The chromosomes, however, often fail to segregate properly. Genetic interactions between tsm1-512 and components of the anaphase proteolytic pathway suggest a functional involvement of the Tsm1 protein in this pathway.


2001 ◽  
Vol 357 (2) ◽  
pp. 417-426 ◽  
Author(s):  
Shigehiko TAMURA ◽  
Naomi MATSUMOTO ◽  
Atsushi IMAMURA ◽  
Nobuyuki SHIMOZAWA ◽  
Yasuyuki SUZUKI ◽  
...  

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleucodystrophy (NALD) and infantile Refsum disease (IRD), are fatal autosomal recessive diseases caused by impaired peroxisome biogenesis, of which 12 genotypes have been reported. ZS patients manifest the severest clinical and biochemical abnormalities, whereas those with NALD and IRD show less severity and the mildest features respectively. We have reported previously that temperature-sensitive peroxisome assembly is responsible for the mildness of the clinical features of IRD. PEX1 is the causative gene for PBDs of complementation group E (CG-E, CG1 in the U.S.A. and Europe), the PBDs of highest incidence, encoding the peroxin Pex1p of the AAA ATPase family. It has been also reported that Pex1p and Pex6p interact with each other. In the present study we investigated phenotype–genotype relationships of CG1 PBDs. Pex1p from IRD such as Pex1p with the most frequently identified mutation at G843D was largely degraded in vivo at 37°C, whereas a normal level of Pex1p was detectable at the permissive temperature. In contrast, PEX1 proteins derived from ZS patients, including proteins with a mutation at L664P or the deletion of residues 634–690, were stably present at both temperatures. Pex1p-G843D interacted with Pex6p at approx. 50% of the level of normal Pex1p, whereas Pex1p from ZS patients mostly showing non-temperature-sensitive peroxisome biogenesis hardly bound to Pex6p. Taking these results together, we consider it most likely that the stability of Pex1p reflects temperature-sensitive peroxisome assembly in IRD fibroblasts. Failure in Pex1p–Pex6p interaction gives rise to more severe abnormalities, such as those manifested by patients with ZS.


Sign in / Sign up

Export Citation Format

Share Document