scholarly journals Identification and Analysis of Zinc Efficiency-Associated Loci in Maize

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianqin Xu ◽  
Xuejie Wang ◽  
Huaqing Zhu ◽  
Futong Yu

Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.

2002 ◽  
Vol 11 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Brenda K. Smith Richards ◽  
Brenda N. Belton ◽  
Angela C. Poole ◽  
James J. Mancuso ◽  
Gary A. Churchill ◽  
...  

The present study investigated the inheritance of dietary fat, carbohydrate, and kilocalorie intake traits in an F2 population derived from an intercross between C57BL/6J (fat-preferring) and CAST/EiJ (carbohydrate-preferring) mice. Mice were phenotyped for self-selected food intake in a paradigm which provided for 10 days a choice between two macronutrient diets containing 78/22% of energy as a composite of either fat/protein or carbohydrate/protein. Quantitative trait locus (QTL) analysis identified six significant loci for macronutrient intake: three for fat intake on chromosomes (Chrs) 8 ( Mnif1), 18 ( Mnif2), and X ( Mnif3), and three for carbohydrate intake on Chrs 17 ( Mnic1), 6 ( Mnic2), and X ( Mnic3). An absence of interactions among these QTL suggests the existence of separate mechanisms controlling the intake of fat and carbohydrate. Two significant QTL for cumulative kilocalorie intake, adjusted for baseline body weight, were found on Chrs 17 ( Kcal1) and 18 ( Kcal2). Without body weight adjustment, another significant kcal locus appeared on distal Chr 2 ( Kcal3). These macronutrient and kilocalorie QTL, with the exception of loci on Chrs 8 and X, encompassed chromosomal regions influencing body weight gain and adiposity in this F2 population. These results provide new insight into the genetic basis of naturally occurring variation in nutrient intake phenotypes.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 390
Author(s):  
Ramiro Recena ◽  
Ana M. García-López ◽  
Antonio Delgado

Zinc (Zn) deficiency constrains crop yield and quality, but soil factors influencing Zn availability to plants and reactions of applied Zn fertilizer are not fully understood. This work is aimed at studying Zn availability in soil and the use efficiency of Zn fertilizers by plants as affected by soil properties and particularly by soil available P. We performed a pot experiment involving four consecutive crops fertilized with Zn sulfate using 36 soils. The cumulative Zn uptake and dry matter yield in the four crops increased with increased initial diethylenetriamine pentaacetic acid extraction of Zn (DTPA-Zn) (R2 = 0.75 and R2 = 0.61; p < 0.001). The initial DTPA-Zn increased with increased Olsen P (R2 = 0.41; p < 0.001) and with increased ratio of Fe in poorly crystalline to Fe in crystalline oxides (R2 = 0.58; p < 0.001). DTPA-Zn decreased with increased cumulative Zn uptake, but not in soils with DTPA-Zn < 0.5 mg kg−1. Overall, the available Zn is more relevant in explaining Zn uptake by plants than applied Zn sulfate. However, in Zn-deficient soils, Zn fertilizer explained most of the Zn uptake by crops. Poorly crystalline Fe oxides and P availability exerted a positive role on Zn availability to plants in soil.


2021 ◽  
Author(s):  
Benjamin Costerousse ◽  
Joel Quattrini ◽  
Roman Grüter ◽  
Emmanuel Frossard ◽  
Cécile Thonar

Abstract Purpose Green manuring can increase the plant available fraction of zinc (Zn) in soil, making it a potential approach to increase wheat Zn concentrations and fight human Zn deficiency. We tested whether green manure increases the ability of both the native soil bacteria and inoculated Zn solubilizing bacteria (ZSB) to mobilize Zn. Methods Wheat was grown in a pot experiment with the following three factors (with or without); (i) clover addition; (ii) soil x-ray irradiation (i.e. elimination of the whole soil biota followed by re-inoculation with the native soil bacteria); and (iii) ZSB inoculation. The incorporation of clover in both the irradiated and the ZSB treatments allowed us to test green manure effects on the mobilization of Zn by indigenous soil bacteria as well as by inoculated strains. Results Inoculation with ZSB did neither increase soil Zn availability nor wheat Zn uptake. The highest soil Zn availabilities were found when clover was incorporated, particularly in the irradiated soils (containing only soil bacteria). This was partly associated with the stimulation of bacterial activity during the decomposition of the incorporated green manure. Conclusion The results support that the activity of soil bacteria is intimately involved in the mobilization of Zn following the incorporation of green manure.


2014 ◽  
Vol 65 (1) ◽  
pp. 61 ◽  
Author(s):  
Mohsin S. Al-Fahdawi ◽  
Jason A. Able ◽  
Margaret Evans ◽  
Amanda J. Able

Durum wheat (Triticum turgidum ssp. durum) is susceptible to Fusarium pseudograminearum and sensitive to zinc (Zn) deficiency in Australian soils. However, little is known about the interaction between these two potentially yield-limiting factors, especially for Australian durum varieties. The critical Zn concentration (concentration of Zn in the plant when there is a 10% reduction in yield) and degree of susceptibility to F. pseudograminearum was therefore determined for five Australian durum varieties (Yawa, Hyperno, Tjilkuri, WID802, UAD1153303). Critical Zn concentration averaged 24.6 mg kg–1 for all durum varieties but differed for the individual varieties (mg kg–1: Yawa, 21.7; Hyperno, 22.7; Tjilkuri, 24.1; WID802, 24.8; UAD1153303, 28.7). Zinc efficiency also varied amongst genotypes (39–52%). However, Zn utilisation was similar amongst genotypes under Zn-deficient or Zn-sufficient conditions (0.51–0.59 and 0.017–0.022 g DM μg–1 Zn, respectively). All varieties were susceptible to F. pseudograminearum but the development of symptoms and detrimental effect on shoot biomass and grain yield were significantly greater in Tjilkuri. Even though crown rot symptoms may still be present, the supply of adequate Zn in the soil helped to maintain biomass and grain yield in all durum varieties. However, the extent to which durum varieties were protected from plant growth penalties due to crown rot by Zn treatment was genotype-dependent.


Author(s):  
Nurlan Kerimov ◽  
James D Hayhurst ◽  
Kateryna Peikova ◽  
Jonathan R Manning ◽  
Peter Walter ◽  
...  

An increasing number of gene expression quantitative trait locus (eQTL) studies have made summary statistics publicly available, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and colocalisation. However, differences between these datasets, in their variants tested, allele codings, and in the transcriptional features quantified, are a barrier to their widespread use. Consequently, target genes for most GWAS signals have still not been identified. Here, we present the eQTL Catalogue (https://www.ebi.ac.uk/eqtl/), a resource which contains quality controlled, uniformly re-computed QTLs from 21 eQTL studies. We find that for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies, enabling the integrative analysis of these data. Although most cis-eQTLs were shared between most bulk tissues, the analysis of purified cell types identified a greater diversity of cell-type-specific eQTLs, a subset of which also manifested as novel disease colocalisations. Our summary statistics can be downloaded by FTP, accessed via a REST API, and visualised on the Ensembl genome browser. New datasets will continuously be added to the eQTL Catalogue, enabling the systematic interpretation of human GWAS associations across many cell types and tissues.


2020 ◽  
Vol 12 (3) ◽  
pp. 673-682
Author(s):  
Yasmina BENABDESSLEM ◽  
Kadda HACHEM ◽  
Samia GHOMARI

The chickpea (Cicer arietinum) is one of the leguminous species most appreciated by consumers in the Mediterranean basin, while being an important source of protein. Nevertheless, its crop yields are greatly limited by several biotic and abiotic stresses, the main one being Ascochyta rabiei, the causal agent of anthracnose. As traditional breeding methods have proved to be ineffective in controlling this pathogen, resorting to biotechnological methods is necessary. Therefore, in this study, the callogenic capacity of stem and leaflet explants from three genotypes of chickpea, namely ‘FLIP 84-92 C’, ‘ILC 32-97’, and ‘ILC 263’, cultured on Murashige and Skoog (MS) medium with different hormonal balances of auxins (indole-3-acetic acid [IAA] and 2,4-dichlorophenoxyacetic acid [2,4-D]) and cytokinin (kinetin), was determined. For all the genotypes, high percentages of callogenesis were recorded in the different explants grown on an MS medium with 2 mg of both IAA and kinetin. Then, a patho-system of Cicer arietinum calluses with Ascochyta rabiei was investigated, followed by a histological assessment of this interaction. The presence of the fruiting bodies of the pathogen was revealed in the calluses of the ‘ILC 32-97’ and ‘ILC 263’ genotypes. Notably, the latter showed a high sensitivity to the pathogen, as indicated by an abundance of pycnidia in its tissues. As for the ‘FLIP 84-92 C’ genotype, the histological sections showed a total absence of inter- and intracellular fruiting bodies of the pathogen in the callus tissues. Therefore, this genotype was considered as resistant to Ascochyta rabiei.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zheng Zeng ◽  
Yanzhou Wang ◽  
Chan Liu ◽  
Xiufeng Yang ◽  
Hengyun Wang ◽  
...  

AbstractRamie is an important natural fiber crop, and the fiber yield and its related traits are the most valuable traits in ramie production. However, the genetic basis for these traits is still poorly understood, which has dramatically hindered the breeding of high yield in this fiber crop. Herein, a high-density genetic map with 6,433 markers spanning 2476.5 cM was constructed using a population derived from two parents, cultivated ramie Zhongsizhu 1 (ZSZ1) and its wild progenitor B. nivea var. tenacissima (BNT). The fiber yield (FY) and its four related traits—stem diameter (SD) and length (SL), stem bark weight (BW) and thickness (BT)—were performed for quantitative trait locus (QTL) analysis, resulting in a total of 47 QTLs identified. Forty QTLs were mapped into 12 genomic regions, thus forming 12 QTL clusters. Among 47 QTLs, there were 14 QTLs whose wild allele from BNT was beneficial. Interestingly, all QTLs in Cluster 10 displayed overdominance, indicating that the region of this cluster was likely heterotic loci. In addition, four fiber yield-related genes underwent positive selection were found either to fall into the FY-related QTL regions or to be near to the identified QTLs. The dissection of FY and FY-related traits not only improved our understanding to the genetic basis of these traits, but also provided new insights into the domestication of FY in ramie. The identification of many QTLs and the discovery of beneficial alleles from wild species provided a basis for the improvement of yield traits in ramie breeding.


2020 ◽  
Vol 21 (23) ◽  
pp. 9280
Author(s):  
Jingyang Tong ◽  
Mengjing Sun ◽  
Yue Wang ◽  
Yong Zhang ◽  
Awais Rasheed ◽  
...  

The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.


Sign in / Sign up

Export Citation Format

Share Document