pi acquisition
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
D M S B Dissanayaka ◽  
Mina Ghahremani ◽  
Meike Siebers ◽  
Jun Wasaki ◽  
William C Plaxton

Abstract Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.


2020 ◽  
Vol 21 (21) ◽  
pp. 8365
Author(s):  
Dhondup Lhamo ◽  
Qiaolin Shao ◽  
Renjie Tang ◽  
Sheng Luan

Phosphate transporters (PHTs) play pivotal roles in phosphate (Pi) acquisition from the soil and distribution throughout a plant. However, there is no comprehensive genomic analysis of the PHT families in Camelina sativa, an emerging oilseed crop. In this study, we identified 73 CsPHT members belonging to the five major PHT families. A whole-genome triplication event was the major driving force for CsPHT expansion, with three homoeologs for each Arabidopsis ortholog. In addition, tandem gene duplications on chromosome 11, 18 and 20 further enlarged the CsPHT1 family beyond the ploidy norm. Phylogenetic analysis showed clustering of the CsPHT1 and CsPHT4 family members into four distinct groups, while CsPHT3s and CsPHT5s were clustered into two distinct groups. Promoter analysis revealed widespread cis-elements for low-P response (P1BS) specifically in CsPHT1s, consistent with their function in Pi acquisition and translocation. In silico RNA-seq analysis revealed more ubiquitous expression of several CsPHT1 genes in various tissues, whereas CsPHT2s and CsPHT4s displayed preferential expression in leaves. While several CsPHT3s were expressed in germinating seeds, most CsPHT5s were expressed in floral and seed organs. Suneson, a popular Camelina variety, displayed better tolerance to low-P than another variety, CS-CROO, which could be attributed to the higher expression of several CsPHT1/3/4/5 family genes in shoots and roots. This study represents the first effort in characterizing CsPHT transporters in Camelina, a promising polyploid oilseed crop that is highly tolerant to abiotic stress and low-nutrient status, and may populate marginal soils for biofuel production.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Zhuangzhuang Liu ◽  
Fengda Li ◽  
Fangren Peng ◽  
Pengpeng Tan ◽  
Kaikai Zhu ◽  
...  

Pecan [Carya illinoinensis (Wangenh.) K. Koch] is an economically important nut tree and grafting is often used for clonal propagation of cultivars. However, there is a lack of research on the effects of rootstocks on scions, which are meaningful targets for directed breeding of pecan grafts. MicroRNAs (miRNAs) play an important role in many biological processes, but the mechanism underlying the involvement of miRNAs in grafting-conferred physiological changes is unclear. To identify the grafting-responsive miRNAs that may be involved in the regulation of growth in grafted pecan, six small RNA libraries were constructed from the phloem of two groups of grafts with significantly different growth performance on short and tall rootstocks. A total of 441 conserved miRNAs belonging to 42 miRNA families and 603 novel miRNAs were identified. Among the identified miRNAs, 24 (seven conserved and 17 novel) were significantly differentially expressed by the different grafts, implying that they might be responsive to grafting and potentially involved in the regulation of graft growth. Ninety-five target genes were predicted for the differentially expressed miRNAs; gene annotation was available for 33 of these. Analysis of their targets suggested that the miRNAs may regulate auxin transport, cell activity, and inorganic phosphate (Pi) acquisition, and thereby, mediate pecan graft growth. Use of the recently-published pecan genome enabled identification of a substantial population of miRNAs, which are now available for further research. We also identified the grafting-responsive miRNAs and their potential roles in pecan graft growth, providing a basis for research on long-distance regulation in grafted pecan.


2019 ◽  
Vol 70 (20) ◽  
pp. 5631-5642 ◽  
Author(s):  
Pedro M de Souza Campos ◽  
Pablo Cornejo ◽  
Carlos Rial ◽  
Fernando Borie ◽  
Rosa M Varela ◽  
...  

Higher Pi acquisition efficiency in wheat was related to an improved root system under Pi starvation, allowing higher Pi uptake. This response correlated with faster modulation of the IPS1–miR399–PHO2 pathway and strigolactone levels.


2015 ◽  
Vol 112 (52) ◽  
pp. E7293-E7302 ◽  
Author(s):  
Lenin Yong-Villalobos ◽  
Sandra Isabel González-Morales ◽  
Kazimierz Wrobel ◽  
Dolores Gutiérrez-Alanis ◽  
Sergio Alan Cervantes-Peréz ◽  
...  

Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation–responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses.


2015 ◽  
Vol 154 (1) ◽  
pp. 98-108 ◽  
Author(s):  
H. M. YUAN ◽  
M. BLACKWELL ◽  
S. MCGRATH ◽  
T. S. GEORGE ◽  
S. H. GRANGER ◽  
...  

SUMMARYTo cope with phosphorus (P) deficiency, plants adapt root morphology to enhance inorganic P (Pi) acquisition from soil by allocating more biomass to roots, but whether the responses can be modified across gradients of P supply is not fully understood. The present study examined changes in root-length density (RLD), root-hair density (RHD) and root-hair length (RHL) of wheat (Triticum aestivumL.) in two contrasting soils, the Rough and Barnfield soils. Wheat plants were grown for 3 weeks in thin-plate rhizotrons in two soils with additions of 0, 10, 25, 50, 100 and 200 mg P/kg soil. Contrary to published literature, as P additions increased it was observed that a concomitant increase in RHL (250 to 1054 µmin the Rough soil and 303–1075 µmin the Barnfield soil) and RHD (57 to 122/mm in the Rough soil and 56–120/mm in the Barnfield soil), while RLD generally decreased (2480–1130 cm/cm3in the Rough soil and 1716–865 cm/cm3in the Barnfield soil). The levels of added P that resulted in critical P concentrations in the soils enabling maximum shoot biomass production were 50 mg/kg P in the Rough soil and 100 mg/kg P in the Barnfield soil, and these additions influenced root morphological changes. Under severe P deficiency, P supply increased RHL and RHD, but RLD was decreased. Improvement in lateral root and root-hair responses in wheat at extreme P deficiency may be a worthy target for breeding more sustainable genotypes for future agroecosystems.


2011 ◽  
Vol 434 (2) ◽  
pp. 243-251 ◽  
Author(s):  
Ruben Ghillebert ◽  
Erwin Swinnen ◽  
Pepijn De Snijder ◽  
Bart Smets ◽  
Joris Winderickx

When starved of Pi, yeast cells activate the PHO signalling pathway, wherein the Pho4 transcription factor mediates expression of genes involved in Pi acquisition, such as PHO84, encoding the high-affinity H+/Pi symporter. In contrast, transcription of PHO87 and PHO90, encoding the low-affinity H+/Pi transport system, is independent of phosphate status. In the present work, we reveal that, upon Pi starvation, these low-affinity Pi transporters are endocytosed and targeted to the vacuole. For Pho87, this process strictly depends on SPL2, another Pho4-dependent gene that encodes a protein known to interact with the N-terminal SPX domain of the transporter. In contrast, the vacuolar targeting of Pho90 upon Pi starvation is independent of both Pho4 and Spl2, although it still requires its SPX domain. Furthermore, both Pho87 and Pho90 are also targeted to the vacuole upon carbon-source starvation or upon treatment with rapamycin, which mimics nitrogen starvation, but although these responses are independent of PHO pathway signalling, they again require the N-terminal SPX domain of the transporters. These observations suggest that other SPX-interacting proteins must be involved. In addition, we show that Pho90 is the most important Pi transporter under high Pi conditions in the absence of a high-affinity Pi-transport system. Taken together, our results illustrate that Pho87 and Pho90 represent non-redundant Pi transporters, which are tuned by the integration of multiple nutrient signalling mechanisms in order to adjust Pi-transport capacity to the general nutritional status of the environment.


2010 ◽  
Vol 61 (4) ◽  
pp. 470-485 ◽  
Author(s):  
Nehla Labidi ◽  
Sana Snoussi ◽  
Manel Ammari ◽  
Wissal Metoui ◽  
N. Ben Yousfi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document