nutrient foramina
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 51)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 6 (6) ◽  
pp. 74-79
Author(s):  
I. Yu. Oliinyk ◽  
◽  
O. V. Tsyhykalo ◽  
O. A. Koval

The purpose of the study was to investigate the topography of permeable (nutrition) arteries in the lower third of leg during human ontogenesis. Materials and methods. The research was conducted on 30 specimens of human prefetuses and fetuses aged 3-9 months of prenatal development; 28 bone specimens of adult tibia and fibula and 27 series of computerized tomography scans of lower extremities of adults aged 21-72 were used. We have used a complex of methods for morphological research: anthropometry, morphometry, macromicroscopy, injections of blood vessels of X-ray contrasting mixtures, three-dimensional reconstruction and statistical analysis. Results and discussion. Cartilage osteogenesis occurs in the prefetal period of prenatal human development, in which blood vessels play a crucial morphofunctional role. During endochondral ossification of the tibia, the vessels of the bone cuff grow into the diaphysis of the cartilaginous model of the bone and osteogenic cells go beyond their limits. In the third trimester of prenatal development, blood vessels grow into the epiphyseal part of the cartilaginous model and an epiphyseal centre of ossification forms. Between the epiphysis and diaphysis centers of ossification, a metaphysical growth plate forms that develops intraosseous anastomosis between the diaphyseal and metaphysical blood vessels. In the metaphysis region, there are extra-skeletal anastomoses. Often, the insertion of nutrition arteries into the bone of the tibia is usually the middle third of bones (55%) and distal metaphysis (37%). In 10%, there were nutrition foramina in the upper third of the tibia. Three-dimensional reconstruction also clearly shows a more extensive and developed network of vessels in the bone marrow canal in metaphysical regions. In the middle third of the tibia and fibula, 1-3 nutrient foramina can be traced on most specimens. On the fibular, in addition to the posterior-medial localization of the nutrient arteries, there were variants with a "high" (above the metaphysis) placement of the entrance of the vessel into the bone substance. Conclusion. The most common places where arteries enter the bones of the lower leg are the middle third of the bones (55%) and the distal metaphysis (37%). In 10%, there were nutrient foramina in the upper third of the tibia. The three-dimensional reconstruction also clearly shows a more extensive and developed network of vessels in the bone marrow canal in metaphysical regions. During the postnatal period, we most often encountered the localization of nutritional arteries on the anterior-lateral surface of the tibia (23%), or their combination – the presence of both nutrient arteries on the posterior and medial bone surfaces (18.3%)


2021 ◽  
Vol 10 (41) ◽  
pp. 3566-3570
Author(s):  
Sukriye Deniz Mutluay ◽  
Ahmet Kursad Acıkgoz ◽  
Memduha Gulhal Bozkır

BACKGROUND Nutrient foramen is a large opening that transfers the arteries that supply the bone to the bone cavity. During surgical procedures, it is very important to have precise and complete information about the location of the foramina to determine whether the fracture line passes close to the nutrient foramina. The purpose of this study was to determine the number and position of the femoral nutrient foramina together with morphometric measurements. METHODS A total of 93 dry adult femurs with unknown sexes were examined in this study. The direction, location and the total number of nutrient foramina of the femur were investigated by using an anthropometer (Lafayette instrument, Indiana). Also, foraminal index was calculated. RESULTS The analysis revealed that 28 (53.8 %) of the femurs with a single nutrient foramen were on the right side and 22 (53.7 %) were on the left side, respectively. Femurs with double nutrient foramina were 23 (44.2 %) and 18 (43.9 %) on right and left sides, respectively. Femurs with triple nutrient foramina were 1(1.9 %) and 1 (2.4 %) on right and left sides, respectively. The foraminal index of femurs was found as (41, 58 %) and (42, 23 %) on the right and left sides, respectively. The nutrient foramen was mostly 84 (90.3 %) located at the middle third of the femur. CONCLUSIONS The findings of this study provide information and details about nutrient foramen which have clinical importance, especially in surgical procedures like bone grafting and microsurgical vascularized bone transplantation. KEY WORDS Femur, Foraminal Index, Nutrient Artery, Nutrient Foramina


Author(s):  
Rajesh K. Kushwaha ◽  
Rajiv Ranjan ◽  
Makardhawaj Prasad

Background: Nutrient foramen gives passage to the nutrient vessels which supply major portion of the bone even bone marrow. Many vascular foramina are present in all bones for the passage of blood vessels. In long bones many small vascular foramina are present at the ends through which epiphyseal and metaphyseal blood vessels passes. In the shaft of long bones one or two larger foramina are present through which nutrient vessels passes. Nutrient artery provides 70% to 80% blood supply of long bones in children and if blood supply is decreased, it may lead to ischemia of bone resulting into less vascularisation of metaphysis and growth plate. Thus precise topographical knowledge of nutrient foramen is necessary for the surgeons to save the nutrient vessels during surgical procedures i.e. fracture fixation, bone grafting etc. Damage to the nutrient artery causes avascular necrosis of bone.Methods: Total 70 dry bones of tibia were taken in the study, without knowledge of sex of the bone. Position, number and direction of the nutrient foramen were noted.Results: single nutrient foramina present in 91.43% of cases and double in 6% of cases. 97.14 % nutrient foramina are directed downward and 2.86% directed upward. 90% nutrient foramina present on posterior surface, 1.42% on lateral surface and 8.57% on lateral border. 75% of nutrient foramina present in upper 1/3 and 25% in middle 1/3. Primary nutrient foramina (>24 G) present in 89.47% and secondary nutrient foramina (<24 G) present in 10.53% of cases.Conclusions: A sound knowledge of nutrient foramen topography, prevent the injuries of vasculature of bone during surgeries.


2021 ◽  
Vol 9 (3.3) ◽  
pp. 8091-8096
Author(s):  
Gerald Tumusiime ◽  
◽  
Gonzaga Gonza Kirum ◽  
John Kukiriza ◽  
◽  
...  

Background: Nutrient foramina form important landmarks on the femur and other bones as the portal of entry for nutrient arteries. Nutrient arteries are important sources of blood supply for growing bones; and their variations may be due to congenital or acquired causes. These variations are important in anatomical comparisons, orthopaedic surgical practice and forensic medicine. Aims: This study aimed at establishing the number and determinants of the nutrient foramina among dry human femur bones from the East African population. Materials and methods: This was a cross-section study of 333 dry femur bones from the East African population, at the Galloway osteological collection of Makerere University college of health sciences. The number of nutrient foramina on the shaft of each femur, the corresponding demographic, clinical and morphometric characteristics were documented. Data were entered in an Excel sheet and exported to STATA 14 for analysis. Univariate, bivariate and multivariable analyses were performed to obtain the summary statistics and the measures of association. At all levels of analysis, a p-value of less than 0.05 was considered statistically significant. Results: Of the 333 femurs, 291 (87.4%) were from males; and 137(50.15%) were right femurs. The age ranged from 20 to 75 years with a mean age of 35 (SD± 12) years. Nutrient foramina ranged from one to four; mean of 1.4 (SD±0.5) and median of 1 (IQR: 1 to 2). Of the 333 femurs, 199 (59.8%) had one foramen, 129 (38.7%) had two foramina, four femurs had three foramina and one femur had four foramina. There was a statistically significant association between the number of nutrient foramina and the femur’s: mid-shaft circumference (p=0.014; 95%CI: 0.003 to 0.028), nationality (p=0.016; 95%CI: -0.284 to -0.030) and sex (p=0.012; 96%CI: -0.405 to -0.050). Conclusion: Nutrient foramina among femurs from the East African population range from one to four per femur, with predominantly one foramen. The key determinants of the number of foramina are: mean mid-shaft circumference, nationality and sex. These findings are significant in anatomical comparisons; forensic and orthopaedic practices. KEY WORDS: Nutrient foramina, dry human femur, East African population, morphometric characteristics.


2021 ◽  
Vol 10 (28) ◽  
pp. 2099-2103
Author(s):  
Harsha Atul Keche ◽  
Preeti Prabhakar Thute ◽  
Darshna Gulabrao Fulmali ◽  
Atul Shankarrao Keche

BACKGROUND The clavicle or collar bone is a modified long bone. It is the first bone to ossify in the membrane. The inferior surface of shaft of clavicle presents a subclavian groove. A nutrient foramen lies at the lateral end of the groove. The nutrient artery is derived from the supraclavicular or clavicular branch of thoracoacromial artery. A bone is supplied by a nutrient artery which passes through the small tunnel called as nutrient foramina. In orthopaedic procedures to preserve the circulation, the topographical knowledge of the nutrient foramen is important. The study was undertaken to analyse nutrient foramina in adult human clavicles in relation to their number, position, direction, and distribution over bone length. METHODS Our study consisted of 67 adult dry human clavicles (31 right sides and 36 left sides). The number, topography and direction of the foramina were studied. The distance of foramina from the sternal end & total length of the clavicles were measured in millimetres by using digital Vernier calipers. The foramen index was calculated by applying the Hughes formula: FI = (DNF TL) x 100. RESULTS Nutrient foramina were present in all the clavicles. Most of the clavicles have single nutrient foramen. We observed 62 (68.13 %) foramina on the posterior surface mostly in the middle 1 / 3rd region. All the nutrient foramina were directed towards acromial end and the foramina index (FI) was 50.2. CONCLUSIONS The topographical knowledge of the nutrient foramen is important in orthopaedic procedures like nail plating, K wire fixation, reduction, internal fixation devices for the treatment of fracture, coracoclavicular ligament repair and in free vascularized bone graft to preserve the circulation. KEY WORDS Clavicle, Nutrient Foramina, Nutrient Artery, Foramina Index (FI)


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Keyang Zhao ◽  
Fangfang Zhang ◽  
Kun Quan ◽  
Bin Zhu ◽  
Guangyi Li ◽  
...  

Abstract Background A defective nutrient foramen in the fovea capitis femoris was hypothesized to reflect the blood circulation pattern of the femoral head, leading to insufficient blood supply and causing osteonecrosis of the femoral head. Methods Normal and necrotic femoral head specimens were collected. The necrotic femoral head group was divided into a non-traumatic and traumatic subgroup. 3D scanning was applied to read the number, the diameter, and the total cross-sectional area of the nutrient foramina in the fovea capitis femoris. Chi-squared tests and independent t-tests were used to detect any differences in the categorical and continuous demographic variables. Logistic regression models were used to estimate the odds ratio (OR) for non-traumatic and traumatic osteonecrosis in different characteristic comparisons. Results A total of 249 femoral head specimens were collected, including 100 normal femoral heads and 149 necrotic femoral heads. The necrotic femoral head group revealed a significantly higher percentage of no nutrient foramen (p < 0.001), a smaller total area of nutrient foramina (p < 0.001), a smaller mean area of nutrient foramina (p = 0.014), a lower maximum diameter of the nutrient foramen (p < 0.001), and a lower minimum diameter of the nutrient foramen (p < 0.001) than the normal femoral head group. The logistic regression model demonstrated an increasing number of nutrient foramina (crude OR, 0.51; p < 0.001), a larger total area of nutrient foramina (crude OR, 0.58; p < 0.001), a larger mean area of nutrient foramina (crude OR, 0.52; p = 0.023), a greater maximum diameter of the nutrient foramen (crude OR, 0.26; p < 0.001), and greater minimum diameter of the nutrient foramen (crude OR, 0.20; p < 0.001) significantly associated with reduced odds of osteonecrosis of the femoral head (ONFH). The necrotic femoral head group was further divided into 118 non-traumatic and 31 traumatic necrotic subgroups, and no significant difference was observed in any characteristics between them. Conclusions Characteristics of the nutrient foramen in the fovea capitis femoris showed a significant defect of necrotic than normal femoral heads, and significantly reduced odds were associated with the higher abundance of the nutrient foramen in ONFH. Therefore, the condition of the nutrient foramen might be the indicator of ONFH.


2021 ◽  
Vol 10 (23) ◽  
pp. 1772-1776
Author(s):  
Govula Subramanyam ◽  
Kategari Chittinarasamma ◽  
Chaluvadi Jayamma ◽  
Somasekhar R.

BACKGROUND Nutrient foramen of humerus is an opening in the shaft of humerus which conducts nutrient vessels for medullary cavity. Major source of blood supply to long bone is the nutrient artery. Knowledge regarding nutrient foramen is important for orthopaedic surgeons while doing any procedure on humerus like bone grafting, plating and also plays an important role in fracture healing. We wanted to determine the location, number, and direction of nutrient foramen of humerus. METHODS The observational study was conducted on 72 adult humeri (36 of right side and 36 of left side) collected from Department of Anatomy, Kurnool Medical College, Kurnool, Andhra Pradesh from 15th September to 31st October 2020. Each humerus was observed for location, number, and direction of nutrient foramen in relation with surface, border andzone. RESULTS In the present study it has been observed that 61 % of humeri had a single foramen, 31 % had two foramina and 8 % had 3 foramina. Majority of nutrient foramina (54.95 %) were present on antero-medial surface, 12.08 % on anterolateral surface, 12.08 % on posterior surface, 19.78 % on medial border, and 1.09 % on lateral border. It was also concluded that most (94.50 %) of the foramina were present in the zone II followed by zone III (3.30 %) then by zone I (2.19 %). CONCLUSIONS Knowledge of number and location of the nutrient foramina in humerus will be helpful in preventing intra-operative injury of nutrient artery during orthopaedic, plastic and reconstructive surgery; and will also be relevant in medico legal practice. KEY WORDS Nutrient Foramen, Humerus, Nutrient Artery, Foraminal Index, Clinical Implications


Sign in / Sign up

Export Citation Format

Share Document