scholarly journals Multilayer Maraging/CoCrNi Composites With Synergistic Strengthening-Toughening Behavior

2021 ◽  
Vol 7 ◽  
Author(s):  
C. X. Chen ◽  
Y. F. Ge ◽  
W. Fang ◽  
X. Zhang ◽  
B. X. Liu ◽  
...  

A novel multilayer maraging/CoCrNi composite with good mechanical properties was successfully fabricated by a vacuum hot-rolling and aging treatment. The yield strength, tensile strength, uniform elongation, and fracture elongation reached 1,151, 1,380 MPa, 15.7, and 24% respectively, realizing the aim of synergistic strengthening–toughening by effectively improving the yield strength of the CoCrNi alloy and strain-hardening capacity of the maraging steel. The vacuum state, high rolling reduction ratio, and alloy element diffusion are beneficial in strengthening the clad interface. The good work-hardening capacity of the CoCrNi alloy compensates for the poor strain-softening behavior of the maraging steel, effectively delaying the premature localized necking of the multilayer composites. The strengthening–toughening mechanism of the multilayer maraging/CoCrNi composites is mainly attributed to the strong interface, nanoscale precipitation, and strain-induced twinning.

2014 ◽  
Vol 697 ◽  
pp. 72-75
Author(s):  
De Liang Yin ◽  
Jian Qiao ◽  
Hong Liang Cui

An extruded ZK60 magnesium alloy was subjected to artificial aging at 180 oC for an investigation of the effect of aging time on its precipitation behavior and mechanical properties. Uniaxial tensile tests were conducted to obtain the mechanical properties. Optical microscopy and transmission electron microscopy (TEM) were employed to observe microstructure change before and after aging treatment. It is shown that, both tensile yield strength and ultimate tensile strength increases with aging time. The fracture elongation after aging for 20 h reaches up to 21.0%, and the yield strength increases to 269.5 MPa, 19.4% higher than that of extruded specimens (un-aged), showing a good match of strength and ductility. Three newly-formed precipitates were observed after aging for over 20 h, among which particulate and dispersive precipitates should be responsible for the good combination of strength and ductility.


Author(s):  
I. Neuman ◽  
S.F. Dirnfeld ◽  
I. Minkoff

Experimental work on the spot welding of Maraging Steels revealed a surprisingly low level of strength - both in the as welded and in aged conditions. This appeared unusual since in the welding of these materials by other welding processes (TIG,MIG) the strength level is almost that of the base material. The maraging steel C250 investigated had the composition: 18wt%Ni, 8wt%Co, 5wt%Mo and additions of Al and Ti. It has a nominal tensile strength of 250 KSI. The heat treated structure of maraging steel is lath martensite the final high strength is reached by aging treatment at 485°C for 3-4 hours. During the aging process precipitation takes place of Ni3Mo and Ni3Ti and an ordered solid solution containing Co is formed.Three types of spot welding cycles were investigated: multi-pulse current cycle, bi-pulse cycle and single pulsle cycle. TIG welded samples were also tested for comparison.The microstructure investigations were carried out by SEM and EDS as well as by fractography. For multicycle spot welded maraging C250 (without aging), the dendrites start from the fusion line towards the nugget centre with an epitaxial growth region of various widths, as seen in Figure 1.


2018 ◽  
Vol 27 (10) ◽  
pp. 106201 ◽  
Author(s):  
Qiu-Min Jing ◽  
Qiang He ◽  
Yi Zhang ◽  
Shou-Rui Li ◽  
Lei Liu ◽  
...  

CORROSION ◽  
1967 ◽  
Vol 23 (1) ◽  
pp. 5-10 ◽  
Author(s):  
J. A. S. GREEN ◽  
E. G. HANEY

Abstract Stress corrosion cracking of 18Ni maraging steel foil has been studied in deionized water solutions with the pH adjusted by NaOH additions over a range from 8 to 13. The full range of NaCl contents from saturated solutions to no addition was tested with specimens stressed to 75 percent of yield strength. For each variation in NaCl content, the specimen failure times go through a minimum with respect to pH. With increasing NaCl content, the minimum becomes more pronounced and its position shifts towards higher pH values. The position of each minimum is indicated by electrode potential measurements. Potentiostatic measurements as a function of pH confirm that maximum susceptibility to stress corrosion cracking occurs just prior to the onset of passivation.


2022 ◽  
Vol 60 (1) ◽  
pp. 83-93
Author(s):  
Young-We Kim ◽  
Yong-Hee Jo ◽  
Yun-Soo Lee ◽  
Hyoung-Wook Kim ◽  
Je-In Lee

The effects of dissolution of the η′ phase by solution treatment on the mechanical properties of A7075-T6 alloy were investigated. Immediately after solution treatment of the T6 sheet at 450 oC or higher, elongation significantly increased and dissolution of the η′ phase occurred. η′ is the main hardening phase. After natural-aging, GPI, which is coherent with the aluminum matrix, was formed and strength increased. When bake hardening after natural-aging was performed, the yield strength slightly increased due to partial dissolution of the GPI and re-precipitation of the η′ phase. In contrast, after solution treatment at 400 oC, there was less elongation increase due to the precipitation of the coarse η phase at grain boundaries and low dissolution of the η′ phase. In addition, when bake hardening after natural-aging was performed, the yield strength decreased due to insufficient GPI, which is the nucleation site of the η′ phase. To promote reprecipitation of the η′ phase, the solution treatment temperature was set to a level that would increase solubility. As a result, the yield strength was significantly increased through re-precipitation of a large number of fine and uniform η′ phase. In addition, to increase the effect of dissolution, a pre-aging treatment was introduced and the bake hardenability can be improved after dissolution.


2004 ◽  
Vol 449-452 ◽  
pp. 305-308
Author(s):  
Lei Wang ◽  
Toshiro Kobayashi ◽  
Chun Ming Liu

Tensile test at loading velocities up to 10 m·s-1(strain rate up to 3.2x102s-1) was carried out forr SiCp/AC4CH composite and AC4CH alloy. The microstructure of the composite before and after tensile deformation was carefully examined with both optical microscope and SEM. The experimental results demonstrated that the ultimate tensile strength (UTS) and yield strength (YS) increase with increasing loading velocity up to 10 m·s-1. Comparing with AC4CH alloy, the fracture elongation of the composite is sensitivity with the increasing strain rate. The YS of both the composite and AC4CH alloy shows more sensitive than that of the UTS with the increasing strain rate, especially in the range of strain rate higher than 102s-1.


2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Juhani Laitila ◽  
Lassi Keränen ◽  
Jari Larkiola

AbstractIn this study, we present the effect of enhanced cooling on the mechanical properties of a high-strength low-alloy steel (having a yield strength of 700 MPa) following a single-pass weld process. The properties evaluated in this study include uniform elongation, impact toughness, yield, tensile and fatigue strengths alongside the cooling time of the weld. With the steel used in this study, the enhanced cooling resulted in a weld joint characterized with excellent cross-weld uniform elongation, yield and fatigue strength. The intensified cooling reduced the time it takes for the weld to reach 100 °C by around 190 s. Not only the fusion line of the weld was less pronounced, but also the grain size of the CGHAZ was greatly refined as a result of the enhanced cooling. The results indicate that combining external cooling to the welding processes can be beneficial for the studied high-strength steel.


1972 ◽  
Vol 94 (1) ◽  
pp. 207-212 ◽  
Author(s):  
D. P. Kendall

The effect of elastic strain rates ranging from 10−14 to 10 sec−1 and temperatures ranging from 200 K (−100 F) to 590 K (600 F) on the yield strength of several steels is reported. The steels utilized are a 1018 mild steel, 4340 steel, H-11 tool steel, and 300 grade maraging steel. The results are interpreted in terms of the Cottrell-Bilby yielding model based on release of dislocations from locking carbon atmospheres. The results for all of the materials except the maraging steel are consistent with this model if it is modified to account for relocking of dislocations by migration of carbon atoms. The maraging steel shows a constant strain rate sensitivity at a constant temperature, over the range of strain rates investigated. This rate sensitivity decreases with increasing temperature and at 590 K (600 F) a decreasing strength with increasing strain rate is found. This is attributed to stress aging effects.


2010 ◽  
Vol 638-642 ◽  
pp. 356-361 ◽  
Author(s):  
Ni Tian ◽  
Gang Zhao ◽  
Liang Zuo ◽  
Chun Ming Liu

The texture, the formability and the correlation between formability indices of Al-0.9Mg- 1.0Si-0.7Cu-0.6Mn alloy for automotive body sheets subjected to solid solution, T4, annealing treatment and artificial aging at 443k for different time were investigated by orientation distribution functions(ODF) analysis, tensile and cupping test, FLD measurement and regression analysis method. The results showed that the textures of cold rolled alloy sheets consist mainly of copper and brass orientations, which are transformed into the texture mainly containing {001}<310> orientation after recrystallization, and aging treatment has little influence on the recrystallization texture. The formability of alloy sheets subjected to solid solution, T4 and annealing treatment is similar, however, the formability was observably deteriorated after aging at 443k. The correlation between uniform elongation δu and FLD0 is the most remarkable in all the given formability indices, the correlation between strain-hardening exponent n and the FLD0 take second place, while there is no correlation between plastic strain ratio r and FLD0. The correlation between reduction of area ψ and cupping value IE is distinct, while ψ and IE have little correlation with FLD0.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940052
Author(s):  
P. Deng ◽  
X. C. Wang ◽  
F. Zhang ◽  
X. M. Qin ◽  
P. Gao ◽  
...  

The mechanical-annealing referred in this work is also named pre-strain, which is widely investigated in TRIP steel, stainless steel, magnesium alloy and aluminum alloy. In this case, we used preloading to input energy into a bulk metallic glass (BMG) to observe the changes in the structure and mechanical properties. We selected Zr[Formula: see text]Co[Formula: see text]Al[Formula: see text] BMG as a model material owning to its outstanding glass forming ability and excellent mechanical properties. The samples were kept at a constant pressure of 1900, 1700 and 1500 MPa (below the yield strength) for 40, 55 and 70 h. The study found out that the density of those samples increased after being pre-loaded. Then, the samples underwent aging treatment at room-temperature for more than 30 days after unloading. After re-compressing the samples, the results show that the yield strength and fracture strength of the samples decreased, and the amplitude of the serrated plastic flow increased during the plastic stage. Our finding might have some implications for understanding the plastic deformation of BMGs.


Sign in / Sign up

Export Citation Format

Share Document