scholarly journals Flexural Strength of Resin Core Build-Up Materials: Correlation to Root Dentin Shear Bond Strength and Pull-Out Force

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2947
Author(s):  
Masao Irie ◽  
Yukinori Maruo ◽  
Goro Nishigawa ◽  
Kumiko Yoshihara ◽  
Takuya Matsumoto

The aims of this study were to investigate the effects of root dentin shear bond strength and pull-out force of resin core build-up materials on flexural strength immediately after setting, after one-day water storage, and after 20,000 thermocycles. Eight core build-up and three luting materials were investigated, using 10 specimens (n = 10) per subgroup. At three time periods—immediately after setting, after one-day water storage, and after 20,000 thermocycles, shear bond strengths to root dentin and pull-out forces were measured. Flexural strengths were measured using a 3-point bending test. For all core build-up and luting materials, the mean data of flexural strength, shear bond strength and pull-out force were the lowest immediately after setting. After one-day storage, almost all the materials yielded their highest results. A weak, but statistically significant, correlation was found between flexural strength and shear bond strength (r = 0.508, p = 0.0026, n = 33). As the pull-out force increased, the flexural strength of core build-up materials also increased (r = 0.398, p = 0.0218, n = 33). Multiple linear regression analyses were conducted using these three independent factors of flexural strength, pull-out force and root dentin shear bond strength, which showed this relationship: Flexural strength = 3.264 × Shear bond strength + 1.533 × Pull out force + 10.870, p = 0.002). For all the 11 core build-up and luting materials investigated immediately after setting, after one-day storage and after 20,000 thermocycles, their shear bond strengths to root dentin and pull-out forces were correlated to the flexural strength in core build-up materials. It was concluded that the flexural strength results of the core build-up material be used in research and quality control for the predictor of the shear bond strength to the root dentin and the retentive force of the post.

2014 ◽  
Vol 39 (4) ◽  
pp. E171-E177 ◽  
Author(s):  
E Schittly ◽  
S Le Goff ◽  
C Besnault ◽  
M Sadoun ◽  
ND Ruse

SUMMARY Aim The aim of this study was to evaluate the effect of water storage on the flexural strength (σf) of four self-etching adhesive resin cements (SEARC) and on the dentin-titanium shear bond strength (SBS) mediated by them. Materials and Methods The selected SEARC were Rely X Unicem, G-Cem, Maxcem, and SmartCem2. For each material, 50 bars (2×2×25 mm) were made and stored in water at 37°C for 1 hour, 1 day, 7 days, 30 days, and 60 days before σf was determined via a three-point bend test. Titanium cylinders were bonded to freshly exposed human dentin surfaces using the selected cements. Fifty samples were obtained for each SEARC and were stored in water at 37°C for 1 hour, 1 day, 7 days, 30 days, and 60 days before SBS was determined. The results were statistically analyzed using two-way analysis of variance followed by Scheffé multiple means comparisons (α=0.05). Pearson's correlation coefficient between σf and SBS was determined. Results Significantly different σf and SBS values were obtained for the four cements. With regards to the effect of water storage, the σf of all materials increased during the first 7 days, was not significantly different between materials by 30 days, and then remained relatively constant or decreased for SmartCem2; SBS was not affected by water storage, with the exception of Maxcem, where a significant drop in SBS was detected after 1 day and no deterioration thereafter. No correlation was found between σf and SBS. Conclusions Under the experimental conditions of this study, 60 days of water storage negatively affected the σf of SmartCem2 but did not negatively affect the SEARC-mediated dentin-titanium SBS (Maxcem showed a significant drop in SBS after 1 day but no deterioration thereafter). The dentin-titanium adherence afforded by Rely X and G-Cem was significantly higher than that of Maxcem and SmartCem2.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 927
Author(s):  
Pirat Karntiang ◽  
Hiroshi Ikeda ◽  
Yuki Nagamatsu ◽  
Hiroshi Shimizu

The purpose of this study was to clarify the influence of alumina air-abrasion on flexural and bond strengths of CAD/CAM composites. The flexural strength (FS) of two brands of commercial CAD/CAM composites was investigated by the three-point bending test using two specimen designs: the single-bar according to the ISO standard and the bonded-double-bar fabricated by bonding two bars with a resin cement. The bond strength between the composites and the resin cement was measured by a conventional shear bond strength (SBS) test. The FS of single-bar specimens was significantly decreased by the air-abrasion. For the FS of the bonded-double-bar specimen, on the other hand, there was no significant difference between the specimens with/without air-abrasion. The SBS for the composites was significantly increased by air-abrasion. The results suggest that alumina air-abrasion improves the SBS of the composites while weakening its FS. Contrarily, the FS of the air-abraded composite did not decrease when the composites were bonded with the resin cement.


2017 ◽  
Vol 16 ◽  
pp. 1-8 ◽  
Author(s):  
Leonardo Fernandes da Cunha ◽  
Ana Beatriz Franco Fernandes ◽  
Amanda Mahammad Mushashe ◽  
Gisele Maria Correr ◽  
Carla Castiglia Gonzaga

The objective of this study was to evaluate the mechanical properties of two bis-acryl interim resin materials, such as color stability, flexural strength and shear bond strength to flowable composite resin, simulating clinical situations when this material has to be used for repair as add-on. Two shades of two bis-acryl interim resin materials [Structur 2 SC (shades Bleach and A2); Protemp 4 (shades A1 and A2)] were evaluated. Discs (5 x 1 mm) were fabricated and baseline color was determined after 1 h. Ten specimens were immersed at 37oC in solutions of distilled water (control) and cola-based soft drink (Coca-Cola). Color measurements were performed with a spectrophotometer using CIELab parameters. Color readings were again measured after 2 hours, 4 hours, 24 hours and 7 days. Flexural strength was determined using the three-point bending test (10 x 1 x 2 mm) on a universal testing machine (0.5 mm/min) (n = 10). Discs of bis-acryl resin were embedded in acrylic resin, planned and distributed in 2 groups: G1 - Filtek Z350 Flow/Protemp4 and G2 - Grandio SO Flow/Structure 3 (n = 15). Cylinders (3.5 x 2 mm) were made with the flowable composite resins and polymerized for 20 s. The specimens were stored in distilled water at 37oC for 24 h and subjected to shear bond strength test. Data were analyzed using one-way ANOVA and Tukey’s test ( = 0.05). ΔE values were higher for Structur Bleach (3.08)a compared with Protemp 4 (shade A1, 2.22)b (shade A2, 2.25)b. There were no significant differences between Structur Bleach and Structur A2 (2.62)ab. Coca-Cola presented higher ΔE values (3.08)a than (2.00)b. Regarding time, ΔE values increased from 1.84a after 2 h to 2.31b after 4 h. The higher values were observed after 24 h and 7 days (2.93c and 3.09d, respectively). No significant differences were observed for the flexural strength of Structur (22.05 MPa)a and Protemp 4 (19.01 MPa)a. The repairs executed with Structur/Grandio flow (9.21 MPa)a were similar to those performed with Protemp 4/Z350XT flow (10.71 MPa)a. It can be concluded that the two bis-acyl resins evaluated showed similar physical and mechanical properties.


2014 ◽  
Vol 85 (4) ◽  
pp. 645-650 ◽  
Author(s):  
Laura Mews ◽  
Matthias Kern ◽  
Robert Ciesielski ◽  
Helge Fischer-Brandies ◽  
Bernd Koos

ABSTRACT Objective:  To examine differences in the shear bond strength of orthodontic brackets on differently mineralized enamel surfaces after applying a caries infiltrant or conventional adhesive. Materials and Methods:  A total of 320 bovine incisors were assigned to eight pretreated groups, and the shear force required for debonding was recorded. Residual adhesive was evaluated by light microscopy using the adhesive remnant index. Statistical analysis included Kolmogorov-Smirnov, analysis of variance (ANOVA), and Scheffé tests. Results:  The highest bond strength (18.8 ± 4.4 MPa) was obtained after use of the caries infiltrant. More residual adhesive and fewer enamel defects were observed on infiltrated enamel surfaces. Brackets on demineralized enamel produced multiple enamel defects. Conclusions:  Acceptable bond strengths were obtained with all material combinations. A caries-infiltrant applied before bracket fixation has a protective effect, especially on demineralized enamel.


2011 ◽  
Vol 36 (5) ◽  
pp. 492-501 ◽  
Author(s):  
B Stawarczyk ◽  
R Hartmann ◽  
L Hartmann ◽  
M Roos ◽  
M Özcan ◽  
...  

SUMMARY This study tested the impact of Gluma Desensitizer on the shear bond strength (SBS) of two conventional (RelyX ARC, Panavia 21) and two self-adhesive (RelyX Unicem, G-Cem) resin luting cements after water storage and thermocycling. Human third molars (N=880) were embedded in acrylic resin. The buccal dentin was exposed. Teeth were randomly divided into four main groups, and the following cements were adhered: 1) RelyX ARC, 2) Panavia 21, 3) RelyX Unicem, and 4) G-Cem. In half of the teeth in each group, dentin was treated with Gluma Desensitizer. In the conventional cement groups, the corresponding etchant and adhesive systems were applied. SBS of the cements was tested after 1 hour (initial); at 1, 4, 9, 16, and 25 days of water storage; and at 1, 4, 9, 16, and 25 days of thermocycling. SBS data were analyzed by one-way analysis of variance (ANOVA); this was followed by the post hoc Scheffé test and a t-test. Overall, the highest mean SBS (MPa) was obtained by RelyX ARC (ranging from 14.6 ± 3.9 to 17.6 ± 5.2) and the lowest by Panavia 21 in combination with Gluma Desensitizer (ranging from 0.0 to 2.9 ± 1.0). All tested groups with and without desensitizer showed no significant decrease after aging conditions compared with baseline values (p>0.05). Only the Panavia 21/Gluma Desensitizer combination showed a significant decrease after 4 days of thermocyling compared with initial values and 1 day thermocycling. Self-adhesive cements with Gluma Desensitizer showed increased SBS after aging conditions (ranging from 7.4 ± 1.4 to 15.2 ± 3) compared with groups without desensitizer (ranging from 2.6 ± 1.2 to 8.8 ± 2.9). No cohesive failures in dentin were observed in any of the test groups. Although self-adhesive cements with and without desensitizer presented mainly adhesive failures after water storage (95.8%) and thermocyling (100%), conventional cement (RelyX ARC) showed mainly mixed failures (90.8% and 89.2%, after water storage and thermocyling, respectively). Application of the Gluma Desensitizer to dentin before cementation had a positive effect on the SBS of self-adhesive cements.


2014 ◽  
Vol 15 (6) ◽  
pp. 688-692 ◽  
Author(s):  
Sukumaran Anil ◽  
Farouk Ahmed Hussein ◽  
Mohammed Ibrahim Hashem ◽  
Elna P Chalisserry

ABSTRACT Objective The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Subjects and methods Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. Results No statistically significant difference was found in bond strengths’ values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. Conclusion The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength. How to cite this article Hussein FA, Hashem MI, Chalisserry EP, Anil S. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J Contemp Dent Pract 2014;15(6):688-692.


2013 ◽  
Vol 24 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Ana Caroline Silva Gama ◽  
Andre Guaraci de Vito Moraes ◽  
Lilyan Cardoso Yamasaki ◽  
Alessandro Dourado Loguercio ◽  
Ceci Nunes Carvalho ◽  
...  

The purpose of this study was to evaluate in vitro the shear bond strength to enamel, flexural strength, flexural modulus, and contraction stress of one orthodontic composite and two flowable composites. Orthodontic brackets were bonded to 45 human maxillary premolars with the composites Transbond XT, Filtek Z-350 flow and Opallis flow and tested for shear bond strength. For measurement of flexural strength and flexural modulus, specimens were fabricated and tested under flexion. For the contraction stress test, cylindrical specimens were tested and an extensometer determined the height of the specimens. The data were subjected to one-way ANOVA and Tukey's test (α=0.05). The shear bond strength values were significantly lower (p<0.05) for the flowable composites compared with the orthodontic composite. For the flexural strength, no statistically significant difference was found among the composites (p>0.05) while the flexural modulus was significantly higher (p<0.05) for Transbond XT than for Filtek Z-350 flow and Opallis flow. The orthodontic composite presented significantly lower contraction stress values than the flowable composites (p<0.05). The light-activated orthodontic composite material presented higher flexural modulus and shear bond strength and lower contraction stress than both flowable composites.


10.2341/08-58 ◽  
2009 ◽  
Vol 34 (2) ◽  
pp. 181-191 ◽  
Author(s):  
A. Reis ◽  
S. K. Moura ◽  
A. Pellizzaro ◽  
K. Dal-Bianco ◽  
A. M. Andrade ◽  
...  

Clinical Relevance The improvement of resin-enamel bond strengths after using Si-C paper and diamond burs for enamel preparation is material dependent. No degradation of enamel bond strength could be observed for any one-step self-etch adhesive system after 12 months of water storage.


2016 ◽  
Vol 27 (6) ◽  
pp. 670-674 ◽  
Author(s):  
Veridiana Resende Novais ◽  
Priscilla Barbosa Ferreira Soares ◽  
Carlla Martins Guimarães ◽  
Laís Rani Sales Oliveira Schliebe ◽  
Stella Sueli Lourenço Braga ◽  
...  

Abstract This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single-rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect.


2016 ◽  
Vol 29 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Li Zhou ◽  
Yuetong Qian ◽  
Kang Gan ◽  
Hong Liu ◽  
Xiuju Liu ◽  
...  

This study was designed to evaluate the shear bond strength of an adhesive/composite system subjected to different pretreated polyetheretherketone (PEEK) surfaces using different thermocycling conditioning methods. A total of 128 specimens were equally divided into four main groups ( n = 32/group): control (no pretreatment), air abrasion, argon plasma pretreatment, and femtosecond laser groups. The surface topographies and surface roughness were observed by atomic force microscopy after different pretreatments. The specimens were bonded with SE Bond/Clearfil AP-X™. All bonded specimens were stored in distilled water at 37°C for 24 h. Afterward, each group was divided into three subgroups ( n = 8/group) as follows: (a) stored in water for 56 h (37°C); (b) thermal aging for 5000 cycles (5°C/55°C); and (c) thermal aging for 10,000 cycles (5°C/55°C). The shear bond strengths were measured. Air abrasion, argon plasma pretreatment, and femtosecond laser significantly strengthened the bond of SE Bond/Clearfil AP-X™ to PEEK composite compared with that without additional pretreatment. In the same surface pretreatment, the shear bond strengths of specimens conditioned using water storage were higher than that using thermocycles (TCs). Additionally, the specimens with 5000 TC showed significantly higher shear bond strength than that with 10000 TC.


Sign in / Sign up

Export Citation Format

Share Document