scholarly journals Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3020
Author(s):  
Maria G. Burdanova ◽  
Marianna V. Kharlamova ◽  
Christian Kramberger ◽  
Maxim P. Nikitin

This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.

2021 ◽  
Author(s):  
Rama Dubey ◽  
Dhiraj Dutta ◽  
Arpan Sarkar ◽  
Pronobesh Chattopadhyay

Carbon nanotubes (CNTs) are considered as one of the ideal materials due to their high surface area, high aspect ratio, impressive material properties, such as mechanical strength, thermal and electrical...


Nanoscale ◽  
2020 ◽  
Vol 12 (40) ◽  
pp. 20831-20839
Author(s):  
Alexandre D. Silva ◽  
César A. Henriques ◽  
Daniel V. Malva ◽  
Mario J. F. Calvete ◽  
Mariette M. Pereira ◽  
...  

Carbon nanotubes functionalized with polysiloxanes and picosecond laser enable photoacoustic generated ultrasound reaching 170 MHz at −6 dB maintaining pressures over 1 MPa, facilitating imaging, drug delivery or gene transfection.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 570
Author(s):  
Simone Adorinni ◽  
Petr Rozhin ◽  
Silvia Marchesan

Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Julia M. Tan ◽  
Palanisamy Arulselvan ◽  
Sharida Fakurazi ◽  
Hairuszah Ithnin ◽  
Mohd Zobir Hussein

The revolutionary development of functionalized carbon nanotubes (f-CNTs) for applications in nanomedicine has emerged as one of the most interesting fields, which has increased exponentially in recent years. This is due to their appealing physical and chemical properties, as well as their unique architecture. After a brief introduction on the physicochemical properties of carbon nanotubes (CNTs), we described several functionalization methods for the surface modification of CNTs, with the aim to facilitate their solubility in physiological aqueous environment. This review focuses on recent advances in drug delivery design based onf-CNTs with an emphasis on the determination of various parameters involved and characterization methods used in order to achieve higher therapeutic efficacy of targeted drug delivery. In particular, we will highlight a variety of different analytical techniques which can be used to characterize the elemental composition, chemical structure, and functional groups introduced onto the CNTs after surface modification. We also review the current progress of availablein vitrobiocompatibility assays based onf-CNTs and then discuss their toxicological profile and biodistribution for advanced drug delivery.


2012 ◽  
Vol 508 ◽  
pp. 76-80 ◽  
Author(s):  
Mitali Kakran ◽  
Lin Li

Carbon Nanotubes (CNTs) and Graphene Have Attracted Tremendous Attention as the Most Promising Carbon Nanomaterials in the 21st Century for a Variety of Applications such as Electronics, Biomedical Engineering, Tissue Engineering, Neuroengineering, Gene Therapy and Biosensor Technology. For the Biomedical Applications, Cnts Have Been Utilized over Existing Drug Delivery Vectors due to their Ability to Cross Cell Membranes Easily and their High Aspect Ratio as Well as High Surface Area, which Provides Multiple Attachment Sites for Drug Targeting. Besides, it Has Also Been Proved that the Functionalization of CNTs May Remarkably Reduce their Cytotoxic Effects and at the Same Time Increase their Biocompatibility. So, the Functionalized CNTs Are Safer than Pristine or Purified CNTs, Thus Offering the Potential Exploitation of Nanotubes for Drug Administration. On the other Hand, More Recently Graphene and its Derivatives Have Been Enormously Investigated in the Biological Applications because of their Biocompatibility, Unique Conjugated Structure, Relatively Low Cost and Availability on both Sides of a Single Sheet for Drug Binding. In Our Study, we Have Covalently Functionalized Multiwalled Carbon Nanotubes (MWCNTs) and Graphene Oxide (GO) with Highly Hydrophilic and Biocompatible Excipients in Order to Increase their Aqueous Solubility and Biocompatibility. Various Excipients Used Were Polyvinyl Alcohol, Pluronic F38, Tween 80 and Maltodextrin. The Poorly Water-Soluble Anticancer Drugs such as, Camptothecin and Ellagic Acid, Were Loaded onto the Functionalized MWCNTs and GO via Non-Covalent Interactions. Furthermore, Drug Loading and Cytotoxic Activity of Drugs Incorporated with the Functionalized MWCNTs and GO as Nanocarriers Were Also Investigated. Drugs Loaded on both Carbon Nanocarriers Exhibited a Higher Cytotoxic Activity than Free Drug. On the other Hand, No Significant Toxicity Was Found even at Higher Concentrations when the Cells Were Incubated with the Functionalized Mwcnts and GO. Therefore, both these Functionalized Carbon Nanomaterials Are Ideal Carriers for Drug Delivery.


Sign in / Sign up

Export Citation Format

Share Document