inherited arrhythmia
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 27)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 22 (17) ◽  
pp. 9293
Author(s):  
Dania Kallas ◽  
Avani Lamba ◽  
Thomas M. Roston ◽  
Alia Arslanova ◽  
Sonia Franciosi ◽  
...  

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and potentially lethal inherited arrhythmia disease characterized by exercise or emotion-induced bidirectional or polymorphic ventricular tachyarrhythmias. The median age of disease onset is reported to be approximately 10 years of age. The majority of CPVT patients have pathogenic variants in the gene encoding the cardiac ryanodine receptor, or calsequestrin 2. These lead to mishandling of calcium in cardiomyocytes resulting in after-depolarizations, and ventricular arrhythmias. Disease severity is particularly pronounced in younger individuals who usually present with cardiac arrest and arrhythmic syncope. Risk stratification is imprecise and long-term prognosis on therapy is unknown despite decades of research focused on pediatric CPVT populations. The purpose of this review is to summarize contemporary data on pediatric CPVT, highlight knowledge gaps and present future research directions for the clinician-scientist to address.


Author(s):  
Chih-Min Liu ◽  
Chien-Liang Liu ◽  
Kai-Wen Hu ◽  
Vincent S. Tseng ◽  
Shih-Lin Chang ◽  
...  

Diseases ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 47
Author(s):  
Clement C. E. Lee ◽  
Kashan Ali ◽  
David Connell ◽  
Ify R. Mordi ◽  
Jacob George ◽  
...  

Coronavirus disease 2019 (COVID-19) has been reported to cause cardiovascular complications such as myocardial injury, thromboembolic events, arrhythmia, and heart failure. Multiple mechanisms—some overlapping, notably the role of inflammation and IL-6—potentially underlie these complications. The reported cardiac injury may be a result of direct viral invasion of cardiomyocytes with consequent unopposed effects of angiotensin II, increased metabolic demand, immune activation, or microvascular dysfunction. Thromboembolic events have been widely reported in both the venous and arterial systems that have attracted intense interest in the underlying mechanisms. These could potentially be due to endothelial dysfunction secondary to direct viral invasion or inflammation. Additionally, thromboembolic events may also be a consequence of an attempt by the immune system to contain the infection through immunothrombosis and neutrophil extracellular traps. Cardiac arrhythmias have also been reported with a wide range of implicated contributory factors, ranging from direct viral myocardial injury, as well as other factors, including at-risk individuals with underlying inherited arrhythmia syndromes. Heart failure may also occur as a progression from cardiac injury, precipitation secondary to the initiation or withdrawal of certain drugs, or the accumulation of des-Arg9-bradykinin (DABK) with excessive induction of pro-inflammatory G protein coupled receptor B1 (BK1). The presenting cardiovascular symptoms include chest pain, dyspnoea, and palpitations. There is currently intense interest in vaccine-induced thrombosis and in the treatment of Long COVID since many patients who have survived COVID-19 describe persisting health problems. This review will summarise the proposed physiological mechanisms of COVID-19-associated cardiovascular complications.


2021 ◽  
pp. 1-3
Author(s):  
Laura F. Halperin ◽  
Andrew D. Krahn ◽  
Zachary W. Laksman

Abstract This image highlights a 38-year-old female with ventricular fibrillation and spontaneous return to sinus rhythm found on an implantable loop recorder inserted for recurrent syncope. Ultimately, she was diagnosed with catecholaminergic polymorphic ventricular tachycardia, a rare inherited arrhythmia disorder.


2021 ◽  
Vol 22 (8) ◽  
pp. 3930
Author(s):  
Tadashi Nakajima ◽  
Shuntaro Tamura ◽  
Masahiko Kurabayashi ◽  
Yoshiaki Kaneko

Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.


2021 ◽  
Author(s):  
Andrew M Glazer ◽  
Giovanni Davogustto ◽  
Christian M Shaffer ◽  
Carlos G Vanoye ◽  
Reshma R Desai ◽  
...  

In 21,846 eMERGE-III participants, sequencing 10 arrhythmia syndrome disease genes identified 123 individuals with pathogenic or likely pathogenic (P/LP) variants. Compared to non-carriers, P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their electronic health records (EHRs). Fifty one participants had variant results returned. Eighteen of these 51 participants had inherited arrhythmia syndrome diagnoses (primarily long QT syndrome), and 11/18 of these diagnoses were made only after variant results were returned. After in vitro functional evaluation of 50 variants of uncertain significance (VUS), we reclassified 11 variants: 3 to likely benign and 8 to P/LP. As large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, EHR phenotypes, and in vitro functional studies.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Giulio Conte ◽  
Arthur Wilde ◽  
Elijah R. Behr ◽  
Daniel Scherr ◽  
Radoslaw Lenarczyk ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Julie Hathaway ◽  
Krista Heliö ◽  
Inka Saarinen ◽  
Jonna Tallila ◽  
Eija H. Seppälä ◽  
...  

Abstract Background Genetic testing in hypertrophic cardiomyopathy (HCM) is a published guideline-based recommendation. The diagnostic yield of genetic testing and corresponding HCM-associated genes have been largely documented by single center studies and carefully selected patient cohorts. Our goal was to evaluate the diagnostic yield of genetic testing in a heterogeneous cohort of patients with a clinical suspicion of HCM, referred for genetic testing from multiple centers around the world. Methods A retrospective review of patients with a suspected clinical diagnosis of HCM referred for genetic testing at Blueprint Genetics was undertaken. The analysis included syndromic, myopathic and metabolic etiologies. Genetic test results and variant classifications were extracted from the database. Variants classified as pathogenic (P) or likely pathogenic (LP) were considered diagnostic. Results A total of 1376 samples were analyzed. Three hundred and sixty-nine tests were diagnostic (26.8%); 373 P or LP variants were identified. Only one copy number variant was identified. The majority of diagnostic variants involved genes encoding the sarcomere (85.0%) followed by 4.3% of diagnostic variants identified in the RASopathy genes. Two percent of diagnostic variants were in genes associated with a cardiomyopathy other than HCM or an inherited arrhythmia. Clinical variables that increased the likelihood of identifying a diagnostic variant included: an earlier age at diagnosis (p < 0.0001), a higher maximum wall thickness (MWT) (p < 0.0001), a positive family history (p < 0.0001), the absence of hypertension (p = 0.0002), and the presence of an implantable cardioverter-defibrillator (ICD) (p = 0.0004). Conclusion The diagnostic yield of genetic testing in this heterogeneous cohort of patients with a clinical suspicion of HCM is lower than what has been reported in well-characterized patient cohorts. We report the highest yield of diagnostic variants in the RASopathy genes identified in a laboratory cohort of HCM patients to date. The spectrum of genes implicated in this unselected cohort highlights the importance of pre-and post-test counseling when offering genetic testing to the broad HCM population.


Author(s):  
Christopher C. Cheung ◽  
Brianna Davies ◽  
Karen Gibbs ◽  
Zachary W. Laksman ◽  
Andrew D. Krahn
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document