scholarly journals Enhancement of Ceramics Based Red-Clay by Bulk and Nano Metal Oxides for Photon Shielding Features

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7878
Author(s):  
Mohamed Elsafi ◽  
Mirvat Fawzi Dib ◽  
Hoda Ezzelddin Mustafa ◽  
M. I. Sayyed ◽  
Mayeen Uddin Khandaker ◽  
...  

We prepared red clays by introducing different percentages of PbO, Bi2O3, and CdO. In order to understand how the introduction of these oxides into red clay influences its attenuation ability, the mass attenuation coefficient of the clays was experimentally measured in a lab using an HPGe detector. The theoretical shielding capability of the material present was obtained using XCOM to verify the accuracy of the experimental results. We found that the experimental and theoretical values agree to a very high degree of precision. The effective atomic number (Zeff) of pure red clay, and red clay with the three metal oxides was determined. The pure red clay had the lowest Zeff of the tested samples, which means that introducing any of these three oxides into the clay will greatly enhance its Zeff, and consequently its attenuation capability. Additionally, the Zeff for red clay with 10 wt% CdO is lower than the Zeff of red clay with 10 wt% Bi2O3 and PbO. We also prepared red clay using 10 wt% CdO nanoparticles and compared its attenuation ability with the red clay prepared with 10 wt% PbO, Bi2O3, and CdO microparticles. We found that the MAC of the red clay with 10 wt% nano-CdO was higher than the MAC of the clay with microparticle samples. Accordingly, nanoparticles could be a useful way to enhance the shielding ability of current radiation shielding materials.

Author(s):  
Idris M. Mustapha ◽  
Atimga B. James ◽  
Sulayman M. Bello

In this study, photon attenuation parameters of (30-x) SiO2–15PbO–10CdO-xTiO2, with x = 0, 2, 4, 6, 8 and 10% mol, were determined and their application as shielding material were discussed. The WinXCOM software was used to determine the mass attenuation coefficient of the studied glasses for the energy range (0.015-15MeV). The mass attenuation coefficient of the glass samples first decline up to 0.09 MeV and slightly increase abruptly and then declined uniformly for all the glasses to approximately zero after about 10 MeV.   The effective atomic number (Zeff) was also calculated for the glass samples and were observe to raise from 0.015 to 0.02 MeV and then decreased between 0.02-5 MeV. On account of the dominance of the photoelectric effect in the low energy region, there was a sudden increase in Zeff at about 0.08 MeV close to the absorption edge of the Pb (0.088 MeV). The rapid increment was observed at 0.1–1.5 MeV by transcending typical Compton scattering interaction at intermediate energies for Zeff'’s and began to decrease in the same form again. The lower Zeff   values were found in low and high energy region for all SPCT glasses. The calculated mean free path, half value layer and tenth value layer values were observe to decline as the TiO2 doping of the glasses increased which accounts for the  three photon interaction mechanisms effectiveness in the variation of MFP and HVL values with energy. It can be concluded that SPCT glasses may be considered an alternative material for radiation shielding practices.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5061
Author(s):  
Dalal Abdullah Aloraini ◽  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed ◽  
Hanan Al-Ghamdi ◽  
Ashok Kumar ◽  
...  

The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). The compatibility between the practical and theoretical results shows the accuracy of the results obtained in the laboratory for determining the MAC of the prepared samples. The mass and linear attenuation coefficients (MACs) increase with the addition of Bi2O3 and A4 glass possesses the highest MAC and LAC. A downward trend in the linear attenuation coefficient (LAC) with increasing the energy from 0.0595 to 1.33 MeV is found. The highest LAC is found at 1.33 MeV (in the range of 0.092–0.143 cm−1). The effective atomic number (Zeff) follows the order B1 > A1 > A2 > A3 > A4. This order emphasizes that increasing the content of Bi2O3 has a positive effect on the photon shielding proficiencies owing to the higher density of Bi2O3 compared with Na2O. The half value layer (HVL) is also determined and the HVL for the tested glasses is computed between 0.106 and 0.958 cm at 0.0595 MeV. The glass with 10 mol% of Bi2O3 has lower HVL than the glasses with 0, 2.5, 5, and 7.5 mol% of Bi2O3. So, the A4 glass needs a smaller thickness than the other glasses to shield the same radiation. As a result of the reported shielding parameters, inserting B2O3 provides lower values of these three parameters, which in turn leads to the development of superior photons shields.


2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


2010 ◽  
Vol 93-94 ◽  
pp. 71-74
Author(s):  
N. Chanthima ◽  
Jakrapong Kaewkhao ◽  
Weerapong Chewpraditkul ◽  
Pichet Limsuwan

Mass attenuation coefficient, total interaction cross-section and effective atomic number of xPbO:(100-x)SiO2, where 30 x 70 (% weight), glass system have been investigated at 662 keV on the basis of the mixture rule. The results are in good agreement with the theoretical values, calculated by WinXCom. The mass attenuation coefficient increases with PbO content, due to higher probability of photoelectric absorption in glass. However, Compton scattering gives dominant contribution to the total mass attenuation coefficient for the glass samples studied. The shielding properties of the glass samples are also better than ordinary shielding concretes and commercial window glasses. These results indicate that the glass systems prepared in this study has a potential to be used as radiation shielding materials.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2020 ◽  
Vol 15 (11) ◽  
pp. 1374-1380
Author(s):  
H. Almohiy ◽  
M. Saad ◽  
Y. M. AbouDeif ◽  
Iwona Grelowska ◽  
M. Reben ◽  
...  

This research reported on the radiation safety characteristics of doped fluorophosphate glasses with heavy rare earth lanthanide (Sm2O3) in the composition 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/30000 ppm Sm2O3 and 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/40000 ppm Sm2O3 in mol%. The parameters for shielding like that mass attenuation coefficient, MAC, linear attenuation coefficient, LAC, tenth value layers, TVL, half-value layers, HVL, effective atomic number, (Zeff), mean free path, MFP, electron density, Neff, electronic cross-sections, ECS, and total atomic cross-sections, ACS, were calculated between 0.015 and 15 MB of preparation glasses. The protection parameters of the current glasses are good in comparison to industrial materials used for nuclear shieldings, such as glass RS 253, ordinary concrete (OC), hematite serpenite (HS), or basalt magnet (BM). From the above mention results, the prepared glasses can be used as radiation safety materials.


2014 ◽  
Vol 979 ◽  
pp. 426-430
Author(s):  
Narong Sangwaranatee ◽  
Jakrapong Kaewkhao ◽  
Natthakridta Chanthima

The total mass attenuation coefficient, partial photon interaction and effective atomic number of commercial window added with BaSO4in have been investigated at photon energy from 1 keV to 100 GeV on the basis of calculation. The theoretical values of total and partial interaction were obtained by the WinXCom software. The variations of mass attenuation coefficient and effective atomic number with photon energy are shown graphically. The results show that the variation of mass attenuation coefficient and effective atomic number has changed with photon energy and composition of window. It has been found that these parameters increase with increasing BaSO4concentrations, due to the increasing photoelectric absorption in glass samples. These results showed that the BaSO4can improve radiation shielding properties in commercial glass and useful for radiation shielding material design.


2021 ◽  
Author(s):  
Kh. S. Shaaban

Abstract Quaternary glasses with a 59B2O3-29SiO2-2LiF-(\(10-x\)) ZnO-\(x\)TiO2 composition using the melt-quench techniques were prepared. XRD examined the nature of prepared glasses. The FT-IR spectra was studied for the changes in the structure of these glasses. While the density is increased, the molar volume of the glass system is reduced. The velocities and elastic modulus of these glasses were experimentally and theoretically based on the Makishima-Mackenzie model evaluated. Besides, for the studied glasses, the radiation shielding efficiency was investigated by Phy-X/PSD and XCOM software. These glasses were found to have an abnormal attenuation, structural, and density relationship. The mass attenuation coefficient (µ/ρ), linear attenuation coefficient (LAC), half-value layer (HVL), tenth value layer (TVL), and effective atomic number (Zeff), of glasses, have been designed to simulate for gamma photon energies between 0.015 and 15 MeV. MAC values calculated using Phy-X/PSD and XCOM were compared and was observed in good agreement with the other.


2020 ◽  
Vol 10 (21) ◽  
pp. 7680
Author(s):  
M. I. Sayyed ◽  
Faras Q. Mohammed ◽  
K. A. Mahmoud ◽  
Eloic Lacomme ◽  
Kawa M. Kaky ◽  
...  

Due to their excellent heat resistance, superalloys are used predominantly in the manufacturing of engine parts and accessories for aircraft and aerospace equipment. The Monte Carlo simulation (MCNP-5) code was performed to estimate the mean track length of the incident photons inside six different alloys. Then, based on the simulated track length, other important γ-ray shielding parameters were calculated. In this study, the highest mass attenuation coefficient was obtained for alloys encoded MAR-302 and MAR-247 and varied in the range 0.035–72.94 and 0.035–71.98 cm2·g−1, respectively. The lowest mass attenuation coefficient was found for alloys coded Inconel-718 and Nimocast-75 with a range of 0.033–59.25 and 0.32–59.30 cm2·g−1, respectively. Use was made of a recently developed online program Phy-X/PD to calculate the effective atomic number, equivalent atomic number, and the buildup factors for the alloys of interest. The effective removal cross-section for the fast neutron was also calculated for the studied alloys: the highest value was found for the alloys coded with Inconel-718 (∑R = 0.01945 cm2·g−1) and Nimocast-75 (∑R = 0.01940 cm2·g−1), and the lowest value was obtained for alloy coded MAR-302 (∑R = 0.01841 cm2·g−1). Calculated data indicate that MAR-302 and MAR-247 are superior candidates for shielding of gamma-rays, while Inconel-718 and Nimocast-75 MAR-302 are suitable for the shielding of fast neutrons.


Author(s):  
Ayano Shanko, MD, Et. al.

The aim of the research is to estimate the X-ray shielding properties of different glass systems using Monte Carlo Simulation. X-ray glass is also known as radiation shielding glass. Glass provides protection against the absorption of energy radiation. The shielding layer is formed by a high concentration of lead and barium. The mass attenuation coefficient, the effective atomic number and the effective electron density are used to determine the position of gamma-ray photons in matter. Shield characterization in terms of mass attenuation coefficient (μm), transmission fraction (T), effective atomic numbers (Zeff), half-value layer (HVL) and exposure build-up. factor (EBF) of a glass system is estimated by the Monte Carlo Simulation. The random sampling and statistical analysis are computed using the monte carlo simulation. Various external factors are considered as the input parameters. The different composition of the glass will be examined using the Monte Carlo simulation and the shielding capability would be determined for the various samples.


Sign in / Sign up

Export Citation Format

Share Document