intervertebral motion
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Alexander Breen ◽  
Diana De Carvalho ◽  
Martha Funabashi ◽  
Greg Kawchuk ◽  
Isabelle Pagé ◽  
...  

Lumbar instability has long been thought of as the failure of lumbar vertebrae to maintain their normal patterns of displacement. However, it is unknown what these patterns consist of. Research using quantitative fluoroscopy (QF) has shown that continuous lumbar intervertebral patterns of rotational displacement can be reliably measured during standing flexion and return motion using standardised protocols and can be used to assess patients with suspected lumbar spine motion disorders. However, normative values are needed to make individualised comparisons. One hundred and thirty-one healthy asymptomatic participants were recruited and performed guided flexion and return motion by following the rotating arm of an upright motion frame. Fluoroscopic image acquisition at 15fps was performed and individual intervertebral levels from L2-3 to L5-S1 were tracked and analysed during separate outward flexion and return phases. Results were presented as proportional intervertebral motion representing these phases using continuous means and 95%CIs, followed by verification of the differences between levels using Statistical Parametric Mapping (SPM). A secondary analysis of 8 control participants matched to 8 patients with chronic, non-specific low back pain (CNSLBP) was performed for comparison. One hundred and twenty-seven asymptomatic participants’ data were analysed. Their ages ranged from 18 to 70 years (mean 38.6) with mean body mass index 23.8 kg/m2 48.8% were female. Both the flexion and return phases for each level evidenced continuous change in mean proportional motion share, with narrow confidence intervals, highly significant differences and discrete motion paths between levels as confirmed by SPM. Patients in the secondary analysis evidenced significantly less L5-S1 motion than controls (p < 0.05). A reference database of spinal displacement patterns during lumbar (L2-S1) intersegmental flexion and return motion using a standardised motion protocol using fluoroscopy is presented. Spinal displacement patterns in asymptomatic individuals were found to be distinctive and consistent for each intervertebral level, and to continuously change during bending and return. This database may be used to allow continuous intervertebral kinematics to drive dynamic models of joint and muscular forces as well as reference values against which to make patient-specific comparisons in suspected cases of lumbar spine motion disorders.


2021 ◽  
Vol 8 ◽  
Author(s):  
Katharina I. Schaub ◽  
Nicola Kelleners ◽  
Martin J. Schmidt ◽  
Nele Eley ◽  
Martin S. Fischer

Lumbosacral vertebral motion is thought to be a factor in the development of degenerative lumbosacral stenosis in German shepherd dogs. So far, few studies exist describing natural canine lumbosacral movement in vivo. Therefore, this investigation aims to achieve a detailed in vivo analysis of bone movement of the lumbosacral region to gain a better understanding of the origin of degenerative lumbosacral stenosis using three-dimensional non-invasive in vivo analysis of canine pelvic and caudal lumbar motion (at L6 and L7). Biplanar cineradiography of the pelvis and caudal lumbar spine of four clinically sound German shepherd dogs at a walk and at a trot on a treadmill was recorded. Pelvic and intervertebral motion was virtually reconstructed and analyzed with scientific rotoscoping. The use of this technique made possible non-invasive measurement of physiological vertebral motion in dogs with high accuracy. Furthermore, the gait patterns of the dogs revealed a wide variation both between individual steps and between dogs. Pelvic motion showed a common basic pattern throughout the stride cycle. Motion at L6 and L7, except for sagittal rotation at a trot, was largely asynchronous with the stride cycle. Intervertebral motion in all dogs was small with approximately 2–3° rotation and translations of approximately 1–2 mm. The predominant motion of the pelvis was axial rotation at a walk, whereas lateral rotation was predominant at a trot. L7 showed a predominance of sagittal rotation (with up to 5.1° at a trot), whereas lateral rotation was the main component of the movement at L6 (about 2.3° in both gaits). During trotting, a coupling of various motions was detected: axial rotation of L7 and the pelvis was inverse and was coupled with craniocaudal translation of L7. In addition, a certain degree of compensation of abnormal pelvic movements during walking and trotting by the caudal lumbar spine was evident.


2020 ◽  
Vol 36 (6) ◽  
pp. 397-407
Author(s):  
Liana M. Tennant ◽  
Erika Nelson-Wong ◽  
Joshua Kuest ◽  
Gabriel Lawrence ◽  
Kristen Levesque ◽  
...  

Spinal stiffness and mobility assessments vary between clinical and research settings, potentially hindering the understanding and treatment of low back pain. A total of 71 healthy participants were evaluated using 2 clinical assessments (posteroanterior spring and passive intervertebral motion) and 2 quantitative measures: lumped mechanical stiffness of the lumbar spine and local tissue stiffness (lumbar erector spinae and supraspinous ligament) measured via myotonometry. The authors hypothesized that clinical, mechanical, and local tissue measures would be correlated, that clinical tests would not alter mechanical stiffness, and that males would demonstrate greater lumbar stiffness than females. Clinical, lumped mechanical, and tissue stiffness were not correlated; however, gradings from the posteroanterior spring and passive intervertebral motion tests were positively correlated with each other. Clinical assessments had no effect on lumped mechanical stiffness. The males had greater lumped mechanical and lumbar erector spinae stiffness compared with the females. The lack of correlation between clinical, tissue, and lumped mechanical measures of spinal stiffness indicates that the use of the term “stiffness” by clinicians may require reevaluation; clinicians should be confident that they are not altering mechanical stiffness of the spine through segmental mobility assessments; and greater resting lumbar erector stiffness in males suggests that sex should be considered in the assessment and treatment of the low back.


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
Daphne To ◽  
Alexander Breen ◽  
Alan Breen ◽  
Silvano Mior ◽  
Samuel J. Howarth

Abstract Background Understanding the mechanisms underlying chronic, nonspecific low back pain (CNSLBP) is essential to advance personalized care and identify the most appropriate intervention. Recently, two intervertebral motion biomarkers termed “Motion Sharing Inequality” (MSI) and “Motion Sharing Variability” (MSV) have been identified for CNSLBP using quantitative fluoroscopy (QF). The aim of this study was to conduct intra- and inter-investigator analytic repeatability studies to determine the extent to which investigator error affects their measurement in clinical studies. Methods A cross-sectional cohort study was conducted using the image sequences of 30 healthy controls who received QF screening during passive recumbent flexion motion. Two independent investigators analysed the image sequences for MSI and MSV from October to November 2018. Intra and inter- investigator repeatability studies were performed using intraclass correlations (ICC), standard errors of measurement (SEM) and minimal differences (MD). Results Intra-investigator ICCs were 0.90 (0.81,0.95) (SEM 0.029) and 0.78 (0.59,0.89) (SEM 0.020) for MSI and MSV, respectively. Inter-investigator ICCs 0.93 (0.86,0.97) (SEM 0.024) and 0.55 (0.24,0.75) (SEM 0.024). SEMs for MSI and MSV were approximately 10 and 30% of their group means respectively. The MDs for MSI for intra- and inter-investigator repeatability were 0.079 and 0.067, respectively and for MSV 0.055 and 0.067. Conclusions MSI demonstrated substantial intra- and inter-investigator repeatability, suggesting that investigator input has a minimal influence on its measurement. MSV demonstrated moderate intra-investigator reliability and fair inter-investigator repeatability. Confirmation in patients with CNSLBP is now required.


2020 ◽  
Vol 29 (10) ◽  
pp. 2619-2627
Author(s):  
Alan Breen ◽  
Fiona Mellor ◽  
Andrew Morris ◽  
Alexander Breen

Abstract Purpose Early disc degeneration (DD) has been thought to be associated with loss of spine stability. However, before this can be understood in relation to back pain, it is necessary to know the relationship between DD and intervertebral motion in people without pain. This study aimed to find out if early-to-moderate DD is associated with intervertebral motion in people without back pain. Methods Ten pain-free adults, aged 51–71, received recumbent and weight bearing MRI scans and quantitative fluoroscopy (QF) screenings during recumbent and upright lumbar flexion. Forty individual level and 10 composite (L2-S1) radiographic and MRI DD gradings were recorded and correlated with intervertebral flexion ROM, translation, laxity and motion sharing inequality and variability for both positions. Results Kinematic values were similar to previous control studies. DD was evidenced up to moderate levels by both radiographic and MRI grading. Disc height loss correlated slightly, but negatively with flexion during weight bearing flexion (R =  − 0.356, p = 0.0.025). Composite MRI DD and T2 signal loss evidenced similar relationships (R =  − 0.305, R =  − 0.267) but did not reach statistical significance (p = 0.056, p = 0.096). No significant relationships between any other kinematic variables and DD were found. Conclusion This study found only small, indefinite associations between early-to-moderate DD and intervertebral motion in healthy controls. Motion sharing in the absence of pain was also not related to early DD, consistent with previous control studies. Further research is needed to investigate these relationships in patients.


2018 ◽  
Vol 28 (2) ◽  
pp. 450-460 ◽  
Author(s):  
Alexander Breen ◽  
Rebecca Hemming ◽  
Fiona Mellor ◽  
Alan Breen

Sign in / Sign up

Export Citation Format

Share Document