Electrochemical corrosion characteristics of hierarchical O-TiN coating on 304L steel substrate

Author(s):  
Gaurav Malik ◽  
Jignesh Hirpara ◽  
Ankit Kumar ◽  
Mritunjay Kumar Pandey ◽  
Ramesh Chandra
2012 ◽  
Vol 184-185 ◽  
pp. 1167-1170
Author(s):  
Guang Yu Du ◽  
Zhen Tan ◽  
Kun Liu ◽  
Hao Chai ◽  
De Chun Ba

In this paper TiN coating was prepared on stainless steel substrate using arc ion plating technique. The coating samples’ phases, surface morphology, micro-determination chemical composition, loss factor and damping ratio were tested. The phases of TiN coating were determined by X-ray diffraction (XRD) technique. The surface morphology and chemical composition of the TiN coating were analyzed by scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS), respectively. The damping performance of the samples was measured by hammering activation according half power bandwidth method. The loss factor or damping ratio of samples were obtained according frequency response curve. The results showed that damping performance of samples was considerably improved by TiN coatings.


2009 ◽  
Vol 79-82 ◽  
pp. 1075-1078
Author(s):  
Nai Ming Lin ◽  
Fa Qin Xie ◽  
Tao Zhong ◽  
Xiang Qing Wu ◽  
Wei Tian

The rare earth (RE) modified chromizing coating was obtained on P110 oil casing tube steel (P110 steel) substrate by means of pack cementation technique to enhance the resistance against corrosion of P110 steel. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) were employed to research microstructure, composition distribution and phase constitution of the chromizing coating. The effect of minor addition of RE on the microstructure of chromizing was discussed. Corrosion resistance of chromizing coating was investigated and compared with that of bare P110 steel via electrochemical corrosion and immersion corrosion in simulated oilfield brine solution, respectively. The results showed that a uniform, continuous and compact coating was formed on P110 steel. The coating with RE addition was more compact than that of the coating added no RE, and a small amount of RE addition could promote the chromizing procedure notably. From SEM and EDX investigation, it had been confirmed that the coating was composed of two different layers, an out layer and an inner layer; the coating mainly contains Fe and Cr; the concentration of Cr decreased as the distance from the surface increased, yet Fe presented the inverse trend. XRD analysis indicated the coating was built up by (Cr, Fe)23C6 referring to the out layer, (Cr, Fe)7C3, Cr7C3 and α-(Cr, Fe) corresponding to the inner layer. Electrochemical corrosion consequence was obtained as follows: the self-corroding electric potential of chromizing coating was higher, and the corrosion current density was lower than that of bare P110 steel, which revealed that chromizing coating had better anti-corrosion performance; immersion corrosion results demonstrated the mass loss of chromized P110 steel was lower, and this meant that chromizing coating had a better corrosion resistance than that of bare P110 steel on the experimental condition. A compact (Cr, Fe)xCy coating can be fabricated by pack cementation technique. As a result of minor RE addition, microstructure and corrosion resistance of the chromizing coating are improved obviously.


2021 ◽  
Vol 11 (3) ◽  
pp. 264
Author(s):  
Sghir Cherrouf ◽  
Yassine Salhi ◽  
Amina El Echhab ◽  
Hassan El Grini ◽  
Jihane Tellal ◽  
...  

<p>The tin coating was elaborated electrolytically on an ordinary steel substrate in SnSO<sub>4</sub> based electrolyte in acid medium with additive (bis-glycobenzimidazolone) at ambient temperature. The pH is maintained at 1.2±0.2 Bis-glycobenzimidazolone influence on the electrochemical properties of the tin coating was investigated using stationary polarization, chronopotentiometry, and cyclic voltammetry techniques. These studies show an apparent decrease in cathodic peak current and a drop in potential. The deposition rate also decreases as the concentration of the additive increases.  SEM (Scanning Electron Microscopy) observation and XRD (X-ray Diffraction) analysis showed that the coating consists of good surface quality of the deposit elaborated by the addition of an optimal concentration of bis-glycobenzimidazolone (10<sup>-3</sup>M) in the electrolyte, which constitutes the continuation of a preliminary study.<strong></strong></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
D. Elango ◽  
A. Daniel Das ◽  
S. P. Kumaresh Babu ◽  
S. Natarajan ◽  
A. Yeshitla

In this present research, the coatings of SA209-T1 using high velocity oxygen fuel were employed for the application of boiler tubes. Due to the adaptation of corrosion easy in boiler material, the research of those properties is significant because of its criticality and functionality during the service time. A right coating was found and applied on the SA209-T1 surface against corrosive environments. Good corrosion resistance is achieved by WC-flyash coatings applied on SA209-T1 substrate. The 90% WC-10% flyash coatings were found to be more protective followed by SA209-T1 steel. WC-flyash covering was tracked down so that the covering is compelling to secure the SA209-T1 steel substrate. It is reasoned that the arrangement of NiO, Cr2O3, CoO, and NiCr2O4 could add to the advancement of consumption opposition in coatings. The steel of uncoated endured erosion as extraordinary stripping and spalling of the scale, which could be because of the development of Fe2O3 oxide scale unprotectively. This paper reveals the performance, applications, and development of 90wt.% WC and 10wt.% fly ash through HVOF coating in SA209-T1 for electrochemical corrosion studies at room temperature.


2010 ◽  
Vol 654-656 ◽  
pp. 1968-1971 ◽  
Author(s):  
Yan Ping Liu ◽  
Jin Xiang Xue ◽  
Pei De Han

A new process technique that TiN permeation layer consisted of diffusion and deposition layer was synthesized on the surface of mild carbon steel has been firstly introduced, mainly according to plasma point discharge, hollow cathode effect and reactive vapor deposition technique. The surface appearance of this layer formed was uniform, compact and fine TiN cellular structure, a diffusion transitional region existing between the deposition layer and substrate. The surface texture was TiN deposition layer + TiN + Ti solid solution diffusion layer. From surface to inner Ti and N elements appeared graded distribution. This paper also mainly investigated the electrochemical corrosion behaviors of this multilayer. The polarization curves of specimens in 10% H2SO4 corrosive media were measured. The eroded surface morphologies were also surveyed by SEM. The results indicated that the erosion resistance of multi-permeation layer was increased many times than PVDTiN and a mild steel substrate, and almost equaled to that of compound process TiN layers.


2011 ◽  
Vol 230-232 ◽  
pp. 85-88
Author(s):  
Zi Xin Zhu ◽  
Ai Jun Li ◽  
Bin Shi Xu

Cored wires and arc spraying were used to produce high Mg content Zn-Al-Mg alloy coatings on low carbon steel substrates. And the corrosion mechanism of the Zn-Al-Mg coatings was investigated comparing with Zn-Al alloy coatings by X-ray diffractometer (XRD) and Electrochemical impedance spectroscopy (EIS). The results show that, The Zn-Al-Mg coatings show higher electrochemical corrosion resistance in salt solution than Zn-Al coatings. With addition of Mg, the corrosion products can block off the pores in the Zn-Al-Mg coating, which is so-called self sealing, and thus prevent attack on the underlying steel substrate.


2017 ◽  
Vol 309 ◽  
pp. 1052-1061 ◽  
Author(s):  
Abdolhadi Hosseinzadeh ◽  
M. Nazmabadi ◽  
N. Vosoughi

2013 ◽  
Vol 750-752 ◽  
pp. 1977-1981 ◽  
Author(s):  
Wen Zhu ◽  
Chao Yin Nie ◽  
Chun Hua Ran ◽  
Yi Dong Jin ◽  
Yang Zhao

Diamond-like carbon (DLC) and TiN coatings were deposited on the 304 austenitic stainless steel(SUS304) substrates by using unbalanced magnetron sputtering and arc ion plating techniques, respectively. The phase structure and surface morphology of coatings were characterized by SEM and XRD.The electrochemical corrosion of two coatings in different electrochemical solutions (including3.5%NaCl,10%HCl,20%NaOH) were investigated by electrochemical workstation.The result showed that DLC coating was amorphous structure and TiN coating was nano-crystalline structure.The surface of DLC coating was smooth and dense,while TiN coating existed pits.In 10%HCl and 3.5%NaCl solutions,the corrosion resistance of DLC coating increased by 4.16 and 10.9 times compared with SUS304 and increased by 5.16 and 1.11 times compared with TiN coating,respectively.But in 20%NaOH solution, the corrosion resistance of DLC was not superior to SUS304 and TiN coating.In 10%HCl solution,the corrosion resistance of TiN coating increased by 9.81 times compared with 304 SUS304.But in 3.5%NaCl and 20%NaOH solutions,the corrosion resistance of TiN coating was worse than SUS304.


Sign in / Sign up

Export Citation Format

Share Document