scholarly journals The Microstructure Evolution and Electrochemical Corrosion Behavior of 7A46 Aluminum Alloy in Different Quenching Conditions

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 477
Author(s):  
Yaru Liu ◽  
Lu Xing ◽  
Qing Zeng ◽  
Qinglin Pan ◽  
Sheng Li ◽  
...  

The quenching condition of aluminum alloy can affect the mechanical property and corrosion resistance of the profile. This paper is aimed at the low quench sensitivity of aluminum alloys. Scanning electron microscopy and transmission electron microscopy were used to analyze precipitate behaviors of the 7A46 aluminum alloy under different isothermal cooling conditions and microstructure evolutions of quench-induced precipitations. The effect of the different isothermal time on the corrosion resistance of the alloy, and the relationship between microstructure and corrosion resistance after quenching were revealed through electrochemical impedance spectroscopy and potentiodynamic polarization tests. Results show that corrosion sensitivity of the quenching-aged alloy is much higher than that of the double-aged (DA) alloy, and the corrosion resistance of the quenched alloy decreases firstly and then increases. Due to the high density of the matrix precipitates, the increased content of the impurity element, the discontinuity of the grain boundary precipitates and the widening of the precipitates free zone, the most serious degree of corrosion performance among the quenched alloys is 295 °C at 800 s, and the self-corrosion potential and self-current density is −0.919 V and 2.371 μA/cm2, respectively.

2014 ◽  
Vol 906 ◽  
pp. 275-282
Author(s):  
Zhu Huan Yu ◽  
Jun Feng Qiang ◽  
Hui Lu Li

The effect of graphite shapes on the electrochemical corrosion behavior of cast iron was studied by means of weight loss tests, electrochemical measurements and electron microscopy. It was found that the electrochemical corrosion behavior of graphite is significantly different from one other, and the corrosive potential difference between carbide ad the matrix is the main driving force of the different phase corrosions. Among them, the center A type and edge D type graphite exhibited the highest corrosion resistance. The corrosion of white iron is worst, because there are so many type carbides in white iron and so there is an obvious tendency to produce micro-cell in white iron.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
R. A. Rodriguez-Diaz ◽  
E. Porcayo-Palafox ◽  
J. Colin ◽  
A. Molina-Ocampo ◽  
...  

The effect of Cu addition on the electrochemical corrosion behavior of Ni3Al intermetallic alloy was investigated by potentiodynamic polarization, open-circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy in 1.0 M H2SO4solution. Performance of the pure elements (Cu, Ni, and Al) was also evaluated. In general, Cu addition improved the corrosion resistance of Ni3Al. Electrochemical measurements show that corrosion resistance of Ni3Al-1Cu alloy is lower than that of other intermetallic alloys and pure elements (Ni, Cu, and Al) in 1.0 M H2SO4solution at 25°C. Surface analysis showed that the Ni3Al alloys are attacked mainly through the dendritic phases, and Cu addition suppresses the density of dendritic phases.


CORROSION ◽  
10.5006/3760 ◽  
2021 ◽  
Author(s):  
Thanyalux Wanotayan ◽  
Tongjai Chookajorn ◽  
Sirikarn Sattawitchayapit ◽  
Piya Khamsuk ◽  
Kanokwan Saengkiettiyut ◽  
...  

The effects of alkaline non-cyanide zinc plating bath formulation on the plating characteristics and deposit properties are investigated. Scanning electron microscope and X-ray diffractometer are used to study the surface morphology and texture of the zinc deposits respectively. Uniform and compact coatings with a dominant (110) texture are obtained for all of the bath formulations. Nevertheless, significant differences in surface morphology and relative preferences for the (110) and (100) planes were found to result from the concentrations of zinc and sodium hydroxide in the bath. Electrochemical impedance spectroscopy and potentiodynamic polarization scan were employed to evaluate the corrosion resistance. The coatings with a moderate Zn (8-11 g/L) and controlled NaOH (120 g/L) contents show good corrosion resistance, with the corrosion current and corrosion rate being the lowest at 8 g/L of Zn and 120 g/L of NaOH. The ratio of texture coefficient, morphology, and compressive residual stress from different bath composition contribute to the corrosion resistant property. The findings from this work should provide useful information of electrogalvanized zinc coatings with enhanced corrosion resistance.


2018 ◽  
Vol 69 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Ioana Arina Gherghescu ◽  
Daniela Ionita ◽  
Sorin Ciuca ◽  
Ruxandra Elena Dumitrescu

This paper presents some electrochemical impedance spectroscopy research results concerning the corrosion resistance of a shape memory Ni50Ti48Nb2 alloy. This one was previously studied by SEM and DSC [1,2] but some new research features had to be made clear in order to be able to explain its electrochemical corrosion behavior. The chemical composition Ni50Ti48Nb2 was chosen in order to obtain a shape memory alloy having a wider hysteresis than equiatomic NiTi, for the purpose of achieving a better thermomechanical stability. Cryogenic applications are aimed. After processing the cast ingot, two samples, S1 and S2, were further annealed at 800�C/12 h and, respectively, at 900�C/12h. Scanning electron micrographs together with the chemical elements mapping results were obtained. They were related to the previous results concerning the informations on the structure of the different phases found in this NiTiNb alloy: austenite, martensite and secondary phases, as well as some primary compounds [1,2]. Considering the size and shape of the complex precipitate particles of NiTiNb in the two differently heat treated samples, these were found responsible for some changes in the transformation temperatures [3] but the electrochemical corrosion behavior of the alloy seems to be influenced to a lesser extent by the heat treatments. Both samples exhibit good values of corrosion resistance, however S2 shows better values than S1. Thus lower transformation temperatures and a slightly better corrosion resistance make the Ni50Ti48Nb2 alloy annealed at 900�C/12h subsequently submitted to thermal cycling to be the right choice for producing couplings in the cryogenic industry.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 672 ◽  
Author(s):  
K.M. Mroczkowska ◽  
A.J. Antończak ◽  
J. Gąsiorek

This study presents an analysis of the impact of the oxide layers, prepared utilizing fiber laser radiation (1062 nm) in ambient air with different process parameters, on the corrosion resistance of EN 5754 aluminum alloy. Due to both high corrosion resistance and high fatigue strength, a 5754 alloy is used, among others, in the marine, aerospace, automotive, and chemical industries. Nevertheless, it corrodes in aggressive environments (with high chloride ions concentration). The controlled delivery of laser radiation energy in the oxygen environment allows the formation of the oxide layer on the surface of the material. We have determined that it significantly affects the resistance of these materials to corrosion. As a result of laser irradiation, changes in the chemical structure of the surface layer (chemical composition as well as surface development) can be observed. It may exert both a positive and a negative consequence on the corrosion resistance. The electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy EIS) have been carried out in an aggressive environment (3% NaCl). Moreover, microscopic examination, chemical tests, and roughness were also performed. The study revealed that appropriate control of the laser process can significantly increase the original corrosion resistance of the 5754 aluminum alloy.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1172
Author(s):  
Polina Metalnikov ◽  
Guy Ben-Hamu ◽  
Kwang Seon Shin ◽  
Amir Eliezer

Magnesium (Mg) alloys possess the lowest density among structural materials, and their application in the automotive and aircraft industries might enhance fuel efficiency. The mechanical properties can be improved by the addition of alloying elements. However, since Mg and its alloys are very susceptible to corrosion degradation, it is important to study the effect of these elements on the alloys’ corrosion behavior. In this study, 1 wt% of calcium (Ca) was added to wrought AM60 Mg alloy, and the electrochemical corrosion behavior of the alloys in alkaline solutions with and without Cl− ions was compared. The corrosion behavior was investigated by means of immersion tests, gravimetric measurements and potentiodynamic polarization (PDP); the characteristics of the oxide layer were studied by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The addition of Ca resulted in precipitation of the ternary aluminum-rich (Mg-Al)2Ca phase. Scanning Kelvin probe force microscope (SKPFM) identified that this phase has a cathodic behavior relative to the α-Mg matrix; hence it can serve as additional sites for initiation of pitting corrosion. As a result, the corrosion resistance of wrought AM60 alloy with 1 wt% Ca addition deteriorated in a NaCl solution. However, in the absence of Cl− ions, alloying with Ca improves the corrosion resistance of wrought AM60 alloy due to the stabilization of the corrosion products layer. The effect of long-period immersion time on the corrosion behavior and alloy oxidation is discussed.


2019 ◽  
Vol 66 (6) ◽  
pp. 827-834
Author(s):  
Kong Weicheng ◽  
Shen Hui ◽  
Gao Jiaxu ◽  
Wu Jie ◽  
Lu Yuling

Purpose This study aims to investigate the electrochemical corrosion performance of high velocity oxygen fuel (HVOF) sprayed WC–12Co coating in 3.5 Wt.% NaCl solution, which provided a guiding significance on the corrosion resistance of H13 hot work mould steel. Design/methodology/approach A WC–12Co coating was fabricated on H13 hot work mould steel using a HVOF, and the electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution was measured using open circuit potential (OCP), potentiodynamic polarization curve (PPC) and electrochemical impedance spectroscopy (EIS) tests. Findings The OCP and PPC of WC–12Co coating positively shift than those of substrate, its corrosion tendency and corrosion rate decrease to enhance its corrosion resistance. The curvature radius of capacitance curve on the WC–12Co coating is larger than that on the substrate, and the impedance and polarization resistance of WC–12Co coating increase faster than those of substrate, which reduces the corrosion process. Originality/value The electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution is first measured using OCP, PPC and EIS tests, which improve the electrochemical corrosion resistance of H13 hot work mould steel.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 986
Author(s):  
Jozef Minda ◽  
Stanislava Fintová ◽  
Branislav Hadzima ◽  
Pavel Doležal ◽  
Michaela Hasoňová ◽  
...  

Pure Mg samples were prepared by powder metallurgy using the cold and hot compacting methods. Cold compacted pure Mg (500 MPa/RT) was characterized by 5% porosity and the mechanical bonding of powder particles. Hot compacted samples (100 MPa/400 °C and 500 MPa/400 °C) exhibited porosity below 0.5%, and diffusion bonding combined with mechanical bonding played a role in material compaction. The prepared pure Mg samples and wrought pure Mg were subjected to corrosion tests using electrochemical impedance spectroscopy. Similar material corrosion behavior was observed for the samples compacted at 500 MPa/RT and 100 MPa/400 °C; however, hot compacted samples processed at 500 MPa/400 °C exhibited longer corrosion resistance in 0.9% NaCl solution. The difference in corrosion behavior was mainly related to the different binding mechanisms of the powder particles. Cold compacted samples were characterized by a more pronounced corrosion attack and the creation of a porous layer of corrosion products. Hot compacted samples prepared at 500 MPa/400 °C were characterized by uniform corrosion and the absence of a layer of corrosion products on the specimen surface. Powder-based cold compacted samples exhibited lower corrosion resistance compared to the wrought pure Mg, while the corrosion behavior of the hot compacted samples prepared at 500 MPa/400 °C was similar to that of wrought material.


Author(s):  
Naizhi Liu ◽  
Bo Jiang ◽  
Zesheng Ji ◽  
Pengxing Cui ◽  
Yunlong Wang ◽  
...  

Anodic oxide films were prepared by anodic oxidation on the surface of ADC12 aluminum alloy and their corrosion properties were explored. The original samples, anodized samples, and sealed samples were placed in the salt spray corrosion chamber and were taken out at different times. Then the corrosion resistance of the ADC12 aluminum alloy was discussed, and the electrochemical corrosion test was researched. The results indicated that the surface of the original samples reveals many large-area pits after salt spray corrosion, while the sealed samples present a smoother surface. The dense oxide films on the surface of the base metals effectively prevent Cl[Formula: see text] entering into aluminum alloys especially after sealing. Electrochemical tests including the potential polarization curve and electrochemical impedance spectroscopy (EIS) as functions of exposure time were employed to reveal the corrosion behavior of surface layers. After the sealing treatment on the oxide films, the corrosion potential moved in the positive direction, the corrosion current density decreased, and the corrosion resistance of the ADC12 aluminum alloy was significantly improved.


CORROSION ◽  
10.5006/3490 ◽  
2021 ◽  
Author(s):  
Caiyun Bai ◽  
Peifeng Li ◽  
Tieqiang Gang ◽  
Jian Li ◽  
Min Wei ◽  
...  

Ti-6Al-4V alloys are typically used for biomedical implants, aerospace components and offshore equipment, where corrosion resistance is critical. In the present paper, the electrochemical corrosion behaviors of Ti-6Al-4V alloys made by different traditional processing and 3D printing technologies in seawater, 3.5 wt.% NaCl, 3.5 wt.% HCl, 5 wt.% HCl and 10 wt.% HCl solutions were studied through polarization curve and electrochemical impedance spectra (EIS) analyses. The influences of microstructure and printing parameters on the corrosion behaviors of Ti-6Al-4V alloys were analyzed. In addition, the corrosion current density, film resistance and charge transfer resistance of traditionally processed Ti-6Al-4V and 3D printed Ti-6Al-4V in the five solutions were compared. The results show that Ti-6Al-4V possesses a better corrosion resistance in seawater than in 3.5 wt.% NaCl, and that the corrosion rate increases with the HCl concentration. Besides, 3D printed Ti-6Al-4V shows a higher corrosion rate in comparison with traditionally processed Ti-6Al-4V because pores are effortless to enrich Cl-. Finally, the ratio of laser power to its scanning speed and the phase constituent composition of the alloy have slight influences on its electrochemical corrosion behavior. It is suggested that for the 3D printed alloy, the deterioration of mechanical properties induced by corrosion damage during servicing should be assessed and considered.


Sign in / Sign up

Export Citation Format

Share Document