scholarly journals Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice

Author(s):  
Anna Longatti ◽  
Luisa Ponzoni ◽  
Edoardo Moretto ◽  
Giorgia Giansante ◽  
Norma Lattuada ◽  
...  

AbstractRho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yann Bernardinelli ◽  
Dominique Muller ◽  
Irina Nikonenko

The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.


Diabetes ◽  
2012 ◽  
Vol 61 (7) ◽  
pp. 1708-1718 ◽  
Author(s):  
E. P. Cai ◽  
M. Casimir ◽  
S. A. Schroer ◽  
C. T. Luk ◽  
S. Y. Shi ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2167
Author(s):  
Brock Humphries ◽  
Zhishan Wang ◽  
Chengfeng Yang

Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.


2019 ◽  
Vol 317 (1) ◽  
pp. C3-C19 ◽  
Author(s):  
Qingyi Ma ◽  
Lubo Zhang ◽  
William J. Pearce

MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21–25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3′-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.


2004 ◽  
Vol 167 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Jennifer R. Morgan ◽  
Gilbert Di Paolo ◽  
Hauke Werner ◽  
Valentina A. Shchedrina ◽  
Marc Pypaert ◽  
...  

Talin, an adaptor between integrin and the actin cytoskeleton at sites of cell adhesion, was recently found to be present at neuronal synapses, where its function remains unknown. Talin interacts with phosphatidylinositol-(4)-phosphate 5-kinase type Iγ, the major phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]–synthesizing enzyme in brain. To gain insight into the synaptic role of talin, we microinjected into the large lamprey axons reagents that compete the talin–PIP kinase interaction and then examined their effects on synaptic structure. A dramatic decrease of synaptic actin and an impairment of clathrin-mediated synaptic vesicle endocytosis were observed. The endocytic defect included an accumulation of clathrin-coated pits with wide necks, as previously observed after perturbing actin at these synapses. Thus, the interaction of PIP kinase with talin in presynaptic compartments provides a mechanism to coordinate PI(4,5)P2 synthesis, actin dynamics, and endocytosis, and further supports a functional link between actin and clathrin-mediated endocytosis.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Yuan Liu ◽  
Yusheng Dou ◽  
Liang Yan ◽  
Xiaobin Yang ◽  
Baorong He ◽  
...  

Abstract Recently, Rho GTPases substrates include Rac (Rac1 and Rac2) and Cdc42 that have been reported to exert multiple cellular functions in osteoclasts, the most prominent of which includes regulating the dynamic actin cytoskeleton rearrangements. In addition, natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Although currently, there are reports about the natural product, which could play a therapeutic role in bone loss diseases (osteoporosis and osteolysis) through the regulation of Rac1/2 and Cdc42 during osteoclasts cytoskeletal structuring. There have been several excellent studies for exploring the therapeutic potentials of various natural products for their role in inhibiting cancer cells migration and function via regulating the Rac1/2 and Cdc42. Herein in this review, we try to focus on recent advancement studies for extensively understanding the role of Rho GTPases substrates Rac1, Rac2 and Cdc42 in osteoclastogenesis, as well as therapeutic potentials of natural medicinal products for their properties on the regulation of Rac1, and/or Rac2 and Cdc42, which is in order to inspire drug discovery in regulating osteoclastogenesis.


2021 ◽  
Author(s):  
Triana Espinosa-Jimenez ◽  
Oriol Busquets ◽  
Amanda Cano ◽  
Ester Verdaguer ◽  
Jordi Olloquequi ◽  
...  

Abstract BackgroundPPARβ/δ, the most PPAR abundant isotype in the central nervous system is involved in the modulation of microglial homeostasis and metabolism. Several studies have demonstrated that people suffering from type 2 diabetes mellitus develop cognitive decline turning insulin resistance one of the best predictors of this disturbance. Although numerous investigations have studied the role of PPARb/d in metabolism, its role in neuronal and cognitive function has been underexplored. Therefore, the aim of the study is to determine the role of PPARb/d in the neuropathological pathways involved in the development of cognitive decline and as to whether a risk factor involved in cognitive loss such as obesity modulates neuropathological markers.6-month-old male PPARβ/δ-null (PPARβ/δ-/-) and wildtype (WT) littermates with the same genetic background (C57BL/6X129/SV) and exceptionally, C57BL/6 were used. After the weaning, animals were fed either with conventional chow (CT) or with a palmitic acid-enriched diet containing 45% of fat mainly from hydrogenated coconut oil (HFD). Thus, four groups were defined: WT CT, WT HFD, PPARβ/δ-/- CT and PPARβ/δ-/- HFD and several pathological mechanisms involved in cognitive decline were analyzed.ResultsOur results confirmed that C57BL/6X129/SV showed significantly increased levels of anxiety compared to C57BL/6. Therefore, to evaluate cognitive decline, behavioral tests were dismissed, and dendritic spine quantification and other biochemical biomarkers were performed.PPARβ/δ-/- mice exhibited a decrease in dendritic spine density and synaptic markers, suggesting an alteration in cognitive function and synaptic plasticity. Likewise, our study demonstrated that the lack of PPARβ/δ receptor enhances gliosis in the hippocampus, contributing to astrocyte and microglial activation and also induced an increase in neuroinflammatory biomarkers. Additionally, alterations in the hippocampal insulin receptor pathway were found. Interestingly, while some of the disturbances caused by the lack of PPARβ/δ were not affected by feeding the HFD, others were exacerbated or required the combination of both factors.ConclusionsTaken together, these findings suggest that the loss of PPARβ/δ-/- affects neuronal and synaptic structure, contributing to cognitive dysfunction and, they also present this receptor as a possible new target for the treatment of cognitive decline.


Haematologica ◽  
2021 ◽  
Author(s):  
Inga Scheller ◽  
Sarah Beck ◽  
Vanessa Göb ◽  
Carina Gross ◽  
Raluca A. I. Neagoe ◽  
...  

Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes (MKs) but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin β4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. MK numbers in the bone marrow (BM) and spleen were unaltered, however, Tmsb4x KO MKs showed defective proplatelet formation in vitro and in vivo. Thymosin β4 deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein (GP) VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin β4 for actin dynamics during platelet biogenesis, platelet activation downstream of GPVI and thrombus stability.


2020 ◽  
Vol 10 (3) ◽  
pp. 168 ◽  
Author(s):  
Francisco Pestana ◽  
Gabriela Edwards-Faret ◽  
T. Grant Belgard ◽  
Araks Martirosyan ◽  
Matthew G. Holt

Astrocytes are ubiquitous in the central nervous system (CNS). These cells possess thousands of individual processes, which extend out into the neuropil, interacting with neurons, other glia and blood vessels. Paralleling the wide diversity of their interactions, astrocytes have been reported to play key roles in supporting CNS structure, metabolism, blood-brain-barrier formation and control of vascular blood flow, axon guidance, synapse formation and modulation of synaptic transmission. Traditionally, astrocytes have been studied as a homogenous group of cells. However, recent studies have uncovered a surprising degree of heterogeneity in their development and function, in both the healthy and diseased brain. A better understanding of astrocyte heterogeneity is urgently needed to understand normal brain function, as well as the role of astrocytes in response to injury and disease.


Sign in / Sign up

Export Citation Format

Share Document