scholarly journals NUMERICAL SIMULATION OF JET EXCAVATION IN CONDUCTOR JETTING OPERATIONS IN SUBMARINE SOIL: MESH ANALYSIS

2022 ◽  
Vol 15 (4) ◽  
pp. 115-125
Author(s):  
D. C. Galindo ◽  
M. S. C. Tenório ◽  
A. F. C. Gomes ◽  
J. L. G. Marinho ◽  
B. R. Barboza ◽  
...  

The more complex exploration techniques and operations in deepwater environment are, the higher become the financial costs involved in the process. The rent of an offshore rig, for instance, can cost hundreds of thousands of dollars per day. Therefore, improving deepwater drilling efficiency can lead to significant cost savings. The drilling process of an oil well starts with the initial drilling, which is the operation to accommodate the conductor casing. Among the techniques to set the conductor casing, jetting operations have become popular in submarine environments where the seafloor sediments allow the technique to be used. In these environments, the submarine soil consists of a deformable body displaying a behavior that falls between a linear elastic solid and viscous fluid. Therefore, its behavior is governed by general theory of rheology, and it can be described as highly viscous non-Newtonian fluid. Despite the lack of comprehensive investigations, promising works can be carried out by considering cohesive soil behavior as viscous fluid. Problems of this type can be solved using computational fluid dynamics (CFD), a powerful software which solves complex fluid mechanics equations. Thus, this work numerically evaluates the excavation mechanism in conductor jetting operations in submarine soil during the first 30 seconds of examination, considering soil as viscous fluid of Herschel-Bulkley. Ansys Fluent®, which is a CDF software based on the finite-volume method, was applied to simulate the jetting excavation process. The results indicate that all meshes generated in the development of this work have an excellent quality, and they also show that the greater the mesh refinement is, the higher the accuracy and robustness of the model will be. However, the computational cost to simulate the model increases exponentially with the increase in number of elements, highlighting the importance of properly balancing mesh refinement and computational effort. When analyzing the results, we could also identify the excavation profile made by the bit jet, which presented an almost symmetrical shape.

Author(s):  
Ikpe E. Aniekan ◽  
Owunna Ikechukwu ◽  
Satope Paul

Four different riser pipe exit configurations were modelled and the flow across them analysed using STAR CCM+ CFD codes. The analysis was limited to exit configurations because of the length to diameter ratio of riser pipes and the limitations of CFD codes available. Two phase flow analysis of the flow through each of the exit configurations was attempted. The various parameters required for detailed study of the flow were computed. The maximum velocity within the pipe in a two phase flow were determined to 3.42 m/s for an 8 (eight) inch riser pipe. After thorough analysis of the two phase flow regime in each of the individual exit configurations, the third and the fourth exit configurations were seen to have flow properties that ensures easy flow within the production system as well as ensure lower computational cost. Convergence (Iterations), total pressure, static pressure, velocity and pressure drop were used as criteria matrix for selecting ideal riser exit geometry, and the third exit geometry was adjudged the ideal exit geometry of all the geometries. The flow in the third riser exit configuration was modelled as a two phase flow. From the results of the two phase flow analysis, it was concluded that the third riser configuration be used in industrial applications to ensure free flow of crude oil and gas from the oil well during oil production.


Author(s):  
Weiqun Zhang ◽  
Andrew Myers ◽  
Kevin Gott ◽  
Ann Almgren ◽  
John Bell

Block-structured adaptive mesh refinement (AMR) provides the basis for the temporal and spatial discretization strategy for a number of Exascale Computing Project applications in the areas of accelerator design, additive manufacturing, astrophysics, combustion, cosmology, multiphase flow, and wind plant modeling. AMReX is a software framework that provides a unified infrastructure with the functionality needed for these and other AMR applications to be able to effectively and efficiently utilize machines from laptops to exascale architectures. AMR reduces the computational cost and memory footprint compared to a uniform mesh while preserving accurate descriptions of different physical processes in complex multiphysics algorithms. AMReX supports algorithms that solve systems of partial differential equations in simple or complex geometries and those that use particles and/or particle–mesh operations to represent component physical processes. In this article, we will discuss the core elements of the AMReX framework such as data containers and iterators as well as several specialized operations to meet the needs of the application projects. In addition, we will highlight the strategy that the AMReX team is pursuing to achieve highly performant code across a range of accelerator-based architectures for a variety of different applications.


1874 ◽  
Vol 22 (148-155) ◽  
pp. 46-47 ◽  

According to Poisson’s theory of the internal friction of fluids, a viscous fluid behaves as an elastic solid would do if it were periodically liquefied for an instant and solidified again, so that at each fresh start it becomes for the moment like an elastic solid free from strain. The state of strain of certain transparent bodies may be investigated by means of their action on polarized light. This action was observed by Brewster, and was shown by Fresnel to be an instance of double refraction. In 1866 I made some attempts to ascertain whether the state of strain in a viscous fluid in motion could be detected by its action on polarized light. I had a cylindrical box with a glass bottom. Within this box a solid cylinder could be made to rotate. The fluid to be examined was placed in the annular space between this cylinder and the sides of the box. Polarized light was thrown up through the fluid parallel to the axis, and the inner cylinder was then made to rotate. I was unable to obtain any result with solution of gum or sirup of sugar, though I observed an effect on polarized light when I compressed some Canada balsam which had become very thick and almost solid in a bottle.


Author(s):  
Alessandra Cuneo ◽  
Alberto Traverso ◽  
Shahrokh Shahpar

In engineering design, uncertainty is inevitable and can cause a significant deviation in the performance of a system. Uncertainty in input parameters can be categorized into two groups: aleatory and epistemic uncertainty. The work presented here is focused on aleatory uncertainty, which can cause natural, unpredictable and uncontrollable variations in performance of the system under study. Such uncertainty can be quantified using statistical methods, but the main obstacle is often the computational cost, because the representative model is typically highly non-linear and complex. Therefore, it is necessary to have a robust tool that can perform the uncertainty propagation with as few evaluations as possible. In the last few years, different methodologies for uncertainty propagation and quantification have been proposed. The focus of this study is to evaluate four different methods to demonstrate strengths and weaknesses of each approach. The first method considered is Monte Carlo simulation, a sampling method that can give high accuracy but needs a relatively large computational effort. The second method is Polynomial Chaos, an approximated method where the probabilistic parameters of the response function are modelled with orthogonal polynomials. The third method considered is Mid-range Approximation Method. This approach is based on the assembly of multiple meta-models into one model to perform optimization under uncertainty. The fourth method is the application of the first two methods not directly to the model but to a response surface representing the model of the simulation, to decrease computational cost. All these methods have been applied to a set of analytical test functions and engineering test cases. Relevant aspects of the engineering design and analysis such as high number of stochastic variables and optimised design problem with and without stochastic design parameters were assessed. Polynomial Chaos emerges as the most promising methodology, and was then applied to a turbomachinery test case based on a thermal analysis of a high-pressure turbine disk.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S317-S331 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zhengwei Li ◽  
Linong Liu ◽  
Jin Wang ◽  
Jincheng Xu

We have improved the so-called deabsorption prestack time migration (PSTM) by introducing a dip-angle domain stationary-phase implementation. Deabsorption PSTM compensates absorption and dispersion via an actual wave propagation path using effective [Formula: see text] parameters that are obtained during migration. However, noises induced by the compensation degrade the resolution gained and deabsorption PSTM requires more computational effort than conventional PSTM. Our stationary-phase implementation improves deabsorption PSTM through the determination of an optimal migration aperture based on an estimate of the Fresnel zone. This significantly attenuates the noises and reduces the computational cost of 3D deabsorption PSTM. We have estimated the 2D Fresnel zone in terms of two dip angles through building a pair of 1D migrated dip-angle gathers using PSTM. Our stationary-phase QPSTM (deabsorption PSTM) was implemented as a two-stage process. First, we used conventional PSTM to obtain the Fresnel zones. Then, we performed deabsorption PSTM with the Fresnel-zone-based optimized migration aperture. We applied stationary-phase QPSTM to a 3D field data. Comparison with synthetic seismogram generated from well log data validates the resolution enhancements.


Author(s):  
Sibo Li ◽  
Hongtao Qiao

Abstract Real-time or faster-than-real-time flow simulation is crucial for studying airflow and heat transfer in buildings, such as building design, building emergency management and building energy performance evaluation. Computational Fluid Dynamics (CFD) with Pressure Implicit with Splitting of Operator (PISO) or Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm is accurate but requires great computational resources. Fast Fluid Dynamics (FFD) can reduce the computational effort but generally lack prediction accuracy due to simplification. This study developed a fast computational method based on FFD in combination with the PISO algorithm. Boussinesq approximation is adopted for simulating buoyancy effect. The proposed solver is tested in a two-dimensional case and a three-dimensional case with experimental data. The predicted results have good agreement with the experimental results. In the two test cases, the proposed solver generates lower Root Mean Square Error (RMSE) compared to the FFD and at the same time, the proposed method reduces computational cost by a factor of 10 and 13 in the two cases compared to CFD.


Author(s):  
Stefan Lammens ◽  
Marc Brughmans ◽  
Jan Leuridan ◽  
Ward Heylen ◽  
Paul Sas

Abstract This paper presents a model updating method based on experimental receptances. The presented method minimises the so called ‘indirect receptance difference’. First, the reduced analytical dynamic stiffness matrix is expressed as an approximate, linearised function of the updating parameters. In a numerically stable, iterative procedure, this reduced analytical dynamic stiffness matrix is changed in such a way that the analytical receptances match the experimental receptances at the updating frequencies. The updating frequencies are a set of selected frequency points in the frequency range of interest. Some considerations about an optimal selection of the updating frequencies are given. Finally, a mixed static-dynamic reduction scheme is discussed. Dynamic reduction of the analytical dynamic stiffness matrix at each updating frequency is physically exact, but it involves a great computational effort. The presented mixed static-dynamic reduction scheme is a simple strategy to reduce the computational cost with a minor loss of accuracy.


2019 ◽  
Vol 176 ◽  
pp. 573-583 ◽  
Author(s):  
Vanessa de Jesus da Silva Ribeiro ◽  
Gabrielle Fontella de Moraes Oliveira ◽  
Muara Cristian ◽  
André Leibsohn Martins ◽  
Lindoval Domiciano Fernandes ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 215-232 ◽  
Author(s):  
Thiago Dias dos Santos ◽  
Mathieu Morlighem ◽  
Hélène Seroussi ◽  
Philippe Remy Bernard Devloo ◽  
Jefferson Cardia Simões

Abstract. Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grounding line indeed plays a major role in ice sheet dynamics, as it is a fundamental control on marine ice sheet stability. Numerical modeling of a grounding line requires significant computational resources since the accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy with reduced computational cost is the adaptive mesh refinement (AMR) approach. We present here the implementation of the AMR technique in the finite element Ice Sheet System Model (ISSM) to simulate grounding line dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b) a posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different combinations of (a) and (b). In both benchmarks, the ZZ error estimator presents high values around the grounding line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the ice sheet, following the complex shape of the bedrock geometry. The ZZ estimator helps guide the refinement procedure such that AMR performance is improved. Our results show that computational time with AMR depends on the required accuracy, but in all cases, it is significantly shorter than for uniformly refined meshes. We conclude that AMR without an associated error estimator should be avoided, especially for real glaciers that have a complex bed geometry.


Author(s):  
Flávia M. Fagundes ◽  
Nara B.C. Santos ◽  
João Jorge R. Damasceno ◽  
Fábio O. Arouca

In order to avoid solid-liquid gravitational separation of particles in the drilling fluid and cuttings generated in this process, the oil industry has been developing drilling fluids with shear-thinning and thixotropic characteristics. In case of operational stops in the drilling process, the intense sedimentation of these particles can damage the equipment used and the well. In this context, this study simulated an operational stop to obtain information about stability of solids in a paraffin-based suspension with time-dependent shear-thinning behavior, which has already been used in current drilling processes. A long-term test using gamma-ray attenuation technique identified the separation dynamics of a set of micrometric particles belonging to and incorporated into the drilling fluid during operation. This test verified the typical regions of gravitational sedimentation and, through constant concentration curves, indicated that the sedimentation process did not occur at a constant rate. This study also proposed a constitutive equation for pressure on solids.


Sign in / Sign up

Export Citation Format

Share Document