An assessment of the North Atlantic (25–75°N) air-sea CO2 flux in 12 CMIP6 models

2022 ◽  
Vol 180 ◽  
pp. 103682
Author(s):  
Yujie Jing ◽  
Yangchun Li ◽  
Yongfu Xu
2013 ◽  
Vol 10 (1) ◽  
pp. 607-627 ◽  
Author(s):  
U. Schuster ◽  
G. A. McKinley ◽  
N. Bates ◽  
F. Chevallier ◽  
S. C. Doney ◽  
...  

Abstract. The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea–air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea–air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea–air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is −0.49 ± 0.05 Pg C yr−1, and by the Arctic it is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea–air flux of −0.61 ± 0.06 Pg C yr−1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.


2012 ◽  
Vol 9 (8) ◽  
pp. 10669-10724 ◽  
Author(s):  
U. Schuster ◽  
G. A. McKinley ◽  
N. Bates ◽  
F. Chevallier ◽  
S. C. Doney ◽  
...  

Abstract. The Atlantic and Arctic oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales, for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modelling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our best estimate of the contemporary sea-to-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is −0.49 ± 0.11 Pg C yr−1 and by the Arctic is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea-to-air flux of −0.61 ± 0.12 Pg C yr−1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor; and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and South Subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and South Subtropics.


2010 ◽  
Vol 7 (6) ◽  
pp. 1977-2012
Author(s):  
V. Scott ◽  
H. Kettle ◽  
C. J. Merchant

Abstract. The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. The NPZD model is the Hadley Centre Ocean Carbon Cycle model (HadOCC) from the UK Met Office, used in the Hadley Centre Coupled Model 3 (HadCM3) and FAst Met Office and Universities Simulator (FAMOUS) GCMs. Here, HadOCC is coupled to the 1-D General Ocean Turbulence Model (GOTM) and forced with European Centre for Medium-Range Weather Forecasting meteorology to undertake a sensitivity analysis of its twenty biological parameters. Analyses are performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W) to assess variability in parameter sensitivities at different locations in the North Atlantic Ocean. Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. We perform the analysis using one-at-a-time perturbations and using a statistical emulator, and compare results. The most sensitive parameters are generic to many NPZD ocean ecosystem models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosythesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.


2013 ◽  
Vol 10 (4) ◽  
pp. 2699-2709 ◽  
Author(s):  
J. D. Shutler ◽  
P. E. Land ◽  
C. W. Brown ◽  
H. S. Findlay ◽  
C. J. Donlon ◽  
...  

Abstract. Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50%) and their calcification can affect the atmosphere-to-ocean (air-sea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007), using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C) production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO) climate oscillation index (r=0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.


2005 ◽  
Vol 2 (4) ◽  
pp. 437-472 ◽  
Author(s):  
S. Raynaud ◽  
O. Aumont ◽  
K. B. Rodgers ◽  
P. Yiou ◽  
J. C. Orr

Abstract. The magnitude of the interannual variability of North Atlantic air-sea CO2 fluxes remains uncertain. Fluxes inferred from atmospheric inversions have large variability, whereas those simulated by ocean models have small variability. Part of the difference is that unlike typical atmospheric inversions, ocean models come with spatial resolution at the sub-basin scale. Here we explore sub-basin-scale spatiotemporal variability in the North Atlantic in one ocean model in order to better understand why the the North Atlantic basin may well contribute very little to the global variability of air-sea CO2 flux. We made two simulations with a biogeochemical model coupled to a global ocean general circulation model (OGCM), which itself was forced by 55-year NCEP reanalysis fields. In the first simulation, atmospheric CO2 was maintained at the preindustrial level (278 ppmv); in the second simulation, atmospheric CO2 followed the observed increase. Simulated air-sea CO2 fluxes and associated variables were analysed with a statistical tool known as multichannel singular spectrum analysis (MSSA). We found that the subtropical gyre is not the largest contributor to the overall, basin-wide variability, in contrast to previous suggestions. The subpolar gyre and the inter-gyre region (the transition area between subpolar and subtropical gyres) also contribute with multipolar anomalies at multiple frequencies: these tend to cancel one another in terms of the basin-wide air-sea CO2 flux. We found a strong correlation between the air-sea CO2 fluxes and the North Atlantic Oscillation (NAO), but only if one takes into account time lags as does MSSA (maximum r=0.64 for lags between 1 and 3 years). The contribution of anthropogenic CO2 to total variability was negligible at interannual time scales, whereas at the decadal (13-year) time scale, it increased variability by 30%.


1892 ◽  
Vol 34 (872supp) ◽  
pp. 13940-13941
Author(s):  
Richard Beynon

2019 ◽  
pp. 73-81
Author(s):  
Oleh Poshedin

The purpose of the article is to describe the changes NATO undergoing in response to the challenges of our time. Today NATO, as a key element of European and Euro-Atlantic security, is adapting to changes in the modern security environment by increasing its readiness and ability to respond to any threat. Adaptation measures include the components required to ensure that the Alliance can fully address the security challenges it might face. Responsiveness NATO Response Force enhanced by developing force packages that are able to move rapidly and respond to potential challenges and threats. As part of it, was established a Very High Readiness Joint Task Force, a new Allied joint force that deploy within a few days to respond to challenges that arise, particularly at the periphery of NATO’s territory. NATO emphasizes, that cyber defence is part of NATO’s core task of collective defence. A decision as to when a cyber attack would lead to the invocation of Article 5 would be taken by the North Atlantic Council on a case-by-case basis. Cooperation with NATO already contributes to the implementation of national security and defense in state policy. At the same time, taking into account that all decision-making in NATO based on consensus, Ukraine’s membership in the Alliance quite vague perspective. In such circumstances, in Ukraine you often can hear the idea of announcement of a neutral status. It is worth reminding that non-aligned status did not save Ukraine from Russian aggression. Neutral status will not accomplish it either. All talks about neutrality and the impossibility of Ukraine joining NATO are nothing but manipulations, as well as recognition of the Ukrainian territory as Russian Federation area of influence (this country seeks to sabotage the Euro-Atlantic movement of Ukraine). Think about it, Moldova’s Neutrality is enshrined in the country’s Constitution since 1994. However, this did not help Moldova to restore its territorial integrity and to force Russia to withdraw its troops and armaments from Transnistria.


Sign in / Sign up

Export Citation Format

Share Document