scholarly journals Theoretical Investigation of an Air-Slot Mode-Size Matcher between Dielectric and MDM Plasmonic Waveguides

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rami A. Wahsheh

Hybrid integration of dielectric and plasmonic waveguides is necessary to reduce the propagation losses due to the metallic interactions and support of nanofabrication of plasmonic devices that deal with large data transfer. In this paper, we propose a direct yet efficient, very short air-slot coupler (ASC) of a length of 36 nm to increase the coupling efficiency between a silicon waveguide and a silver-air-silver plasmonic waveguide. Our numerical simulation results show that having the ASC at the interface makes the fabrication process much easier and ensures that light couples from a dielectric waveguide into and out of a plasmonic waveguide. The proposed coupler works over a broad frequency range achieving a coupling efficiency of 86% from a dielectric waveguide into a metal-dielectric-metal (MDM) plasmonic waveguide and 68% from a dielectric waveguide to an MDM plasmonic waveguide and back into another dielectric waveguide. In addition, we show that even if there are no high-precision fabrication techniques, light couples from a conventional dielectric waveguide (CDW) into an MDM plasmonic waveguide as long as there is an overlap between the CDW and ASC, which reduces the fabrication process tremendously. Our proposed coupler has an impact on the miniaturization of ultracompact nanoplasmonic devices.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Qian Zhang ◽  
Jinbin Pan ◽  
Shulong Wang ◽  
Yongqian Du ◽  
Jieyu Wu

Facing the problems of ohmic loss and short propagation length, the application of plasmonic waveguides is limited. Here, a triangle hybrid plasmonic waveguide is introduced, where a cylinder silicon waveguide is separated from the triangle prism silver waveguide by a nanoscale silica gap. The process of constant optimization of waveguide structure is completed and simulation results indicate that the propagation length could reach a length of 510 μm, and the normalized mode area could reach 0.03 along with a high figure of merit 3150. This implies that longer propagation length could be simultaneously achieved along with relatively ultra-deep subwavelength mode confinement due to the hybridization between metallic plasmon polarization mode and silicon waveguide mode, compared with previous study. By an analysis of fabrication errors, it is confirmed that this waveguide is fairly stable over a wide error range. Additionally, the excellent performance of this is further proved by the comparison with other hybrid plasmonic waveguides. Our work is significant to manipulate light waves at sub-wavelength dimensions and enlarge the application fields, such as light detection and photoelectric sensors, which also benefit the improvement of the integration of optical devices.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 641
Author(s):  
Yuan Zhai ◽  
Yi Xiang ◽  
Weiqing Yuan ◽  
Gang Chen ◽  
Jinliang Shi ◽  
...  

High sensitivity detection of terahertz waves can be achieved with a graphene nanomesh as grating to improve the coupling efficiency of the incident terahertz waves and using a graphene nanostructure energy gap to enhance the excitation of plasmon. Herein, the fabrication process of the FET THz detector based on the rectangular GNM (r-GNM) is designed, and the THz detector is developed, including the CVD growth and the wet-process transfer of high quality monolayer graphene films, preparation of r-GNM by electron-beam lithography and oxygen plasma etching, and the fabrication of the gate electrodes on the Si3N4 dielectric layer. The problem that the conductive metal is easy to peel off during the fabrication process of the GNM THz device is mainly discussed. The photoelectric performance of the detector was tested at room temperature. The experimental results show that the sensitivity of the detector is 2.5 A/W (@ 3 THz) at room temperature.


2021 ◽  
pp. 60-70
Author(s):  
Piyush Kumar Shukla ◽  
◽  
Prashant Kumar Shukla ◽  

The interpretation of large data streams necessitates high-performance repeated transfers, which overload Microprocessor System on Chips (SoC). The effective direct memory access (DMA) controller performs bulk data transfers without the CPU's involvement. The Direct Memory Controller (DMAC) solves this by facilitating bulk data transfer and execution. In this work, we created an intelligent DMAC (I-DMAC) for accessing video processing data without using CPUs. The model includes Bus selection Module, User control signal, Status Register, DMA supported Address, and AXI-PCI subsystems for improved video frame analysis. These modules are experimentally verified in Xilinx FPGA SoC architecture using VHDL code simulation and results compared to the E-DMAC model.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1663
Author(s):  
Kwang-Yong Jeong ◽  
Seong Won Lee ◽  
Jae-Hyuck Choi ◽  
Jae-Pil So ◽  
Hong-Gyu Park

Efficient integration of a single-photon emitter with an optical waveguide is essential for quantum integrated circuits. In this study, we integrated a single-photon emitter in a hexagonal boron nitride (h-BN) flake with a Ag plasmonic waveguide and measured its optical properties at room temperature. First, we performed numerical simulations to calculate the efficiency of light coupling from the emitter to the Ag plasmonic waveguide, depending on the position and polarization of the emitter. In the experiment, we placed a Ag nanowire, which acted as the plasmonic waveguide, near the defect of the h-BN, which acted as the single-photon emitter. The position and direction of the nanowire were precisely controlled using a stamping method. Our time-resolved photoluminescence measurement showed that the single-photon emission from the h-BN flake was enhanced to almost twice the intensity as a result of the coupling with the Ag nanowire. We expect these results to pave the way for the practical implementation of on-chip nanoscale quantum plasmonic integrated circuits.


Author(s):  
Driss En-Nejjary ◽  
Francois Pinet ◽  
Myoung-Ah Kang

Recently, in the field of information systems, the acquisition of geo-referenced data has made a huge leap forward in terms of technology. There is a real issue in terms of the data processing optimization, and different research works have been proposed to analyze large geo-referenced datasets based on multi-core approaches. In this article, different methods based on general-purpose logic on graphics processing unit (GPGPU) are modelled and compared to parallelize overlapping aggregations of raster sequences. Our methods are tested on a sequence of rasters representing the evolution of temperature over time for the same region. Each raster corresponds to a different data acquisition time period, and each raster geo-referenced cell is associated with a temperature value. This article proposes optimized methods to calculate the average temperature for the region for all the possible raster subsequences of a determined length, i.e., to calculate overlapping aggregated data summaries. In these aggregations, the same subsets of values are aggregated several times. For example, this type of aggregation can be useful in different environmental data analyses, e.g., to pre-calculate all the average temperatures in a database. The present article highlights a significant increase in performance and shows that the use of GPGPU parallel processing enabled us to run the aggregations up to more than 50 times faster than the sequential method including data transfer cost and more than 200 times faster without data transfer cost.


2011 ◽  
Vol 403-408 ◽  
pp. 4295-4299
Author(s):  
H. Hazura ◽  
A.R. Hanim ◽  
B. Mardiana ◽  
Sahbudin Shaari ◽  
P.S. Menon

We present a detailed fabrication process of silicon optical waveguide with a depth of 4μm via simulation and experiment. An anisotropic wet etching using Potassium Hydroxide (KOH) solutions was selected to study the influence of major fabrication parameters such as etch rate, oxidation time and development time to the fabrication performance. The fabrication of the silicon waveguide with the orientation of was modeled using ATHENA from 2D Silvaco software and was later compared with the actual fabricated device. Etching time of 4 minutes was required to etch the Si to the depth of 4μm to obtain a perfectly trapeizoidal optical waveguide structure. Our results show that the simulation model is trustworthy to predict the performance of the practical anisotropic wet etching fabrication process. The silicon-based waveguide components are targeted to be employed in realizing future photonic devices such as optical modulators.


Author(s):  
Andrei Andryieuski ◽  
Radu Malureanu ◽  
Jean-Sebastien Bouillard ◽  
Anatoly V. Zayats ◽  
Andrei V. Lavrinenko

Sign in / Sign up

Export Citation Format

Share Document