scholarly journals Effects of chemical reaction, viscosity, thermal conductivity, heat source, radiation/absorption, on MHD mixed convection nano-fluids flow over an unsteady stretching sheet by HAM and numerical method

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402210743
Author(s):  
Sajid Rehman ◽  
Taza Gul ◽  
Waris Khan ◽  
Aamir Khan ◽  
Zeeshan

Investigations are performed for further observations of heat and mass transfer in magneto-hydrodynamic mixed-convectional nano-fluid flow with the assumption of variable viscosity and thermal-conductivity over an unsteady stretching sheet. Base fluid is Carboxy-methyl cellulose (CMC) water as a carrier fluid with different nano-particles such as [Formula: see text] (Titanium), Ag (Silver), [Formula: see text] (Aluminum), and Cu (Copper). Flow contains different physical parameters, such as heat source, chemical reaction effect, Schmidt number, and radiation absorptions effects are observed to be significant in the presences of magnetic field. Obtained equations are solved by numerically BVP4C-package (shooting method) and analytically by BVPh2.0-package (Homotopy Analysis Method “HAM”). Interested physical quantities are, viscosity-parameter ( A), Thermal-conductivity parameter ( N),Thermocapillary-number ( M), Hartmann-number (Ma), Prandtl-number (Pr), 4-nano-particles ([Formula: see text]), temperature Grashof number ([Formula: see text]), and mass Grashof number ([Formula: see text]) are the focus to the velocity, temperature, and solute concentration profiles. It is concluded that, Solute concentration of ([Formula: see text])-water has higher than the other 3-nano-fluids. Mass flux, heat flux, and Skin friction of fluids are direct functions of magnetic force, while inverse function of temperature. Magnetic force also decreased the speed of fluids and hence mass flux reduced which implies that, the temperature reduces. [Formula: see text] has also inverse relation with mass flux, heat flux, and skin friction, while direct relation with the speed of fluids. Similarly, [Formula: see text] has inverse relation with [Formula: see text], [Formula: see text], and [Formula: see text], but direct relation with [Formula: see text]. Different results are shown in graphical and tabular form.

2020 ◽  
Vol 8 (5) ◽  
pp. 5306-5309

In recent years the greater interest of increase in thermal conductivity have attracted because there is comparison to that of the base fluids by Nano fluids. The wide spread of nano particles of the formation nano fluid of a base fluid, takes place. These nano fluids are very much useful in thermo dynamical applications and in the study of so many physical-chemical studies. The properties of molecular of sound in nano fluids like transmission undergo changes of associated systems in highly dependent and the cohesive properties of liquids. Generally nano fluid is having high thermal conductivity values. Four different temperatures have been studied in this thermo-acoustical work and FTIR Spectrum of Coo Nano fluid at T (303.15, 308.15, 313.15 and 318.15) K. The observed results are explained in the nature of interactions and bond formation.


2020 ◽  
Vol 9 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Nainaru Tarakaramu ◽  
P.V. Satya Narayana ◽  
Bhumarapu Venkateswarlu

AbstractThe present investigation deals with the steady three-dimensional flow and heat transfer of nanofluids due to stretching sheet in the presence of magnetic field and heat source. Three types of water based nanoparticles namely, copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are considered in this study. The temperature dependent variable thermal conductivity and thermal radiation has been introduced in the energy equation. Using suitable similarity transformations the dimensional non-linear expressions are converted into dimensionless system and are then solved numerically by Runge-Kutta-Fehlberg scheme along with well-known shooting technique. The impact of various flow parameters on axial and transverse velocities, temperature, surface frictional coefficients and rate of heat transfer coefficients are visualized both in qualitative and quantitative manners in the vicinity of stretching sheet. The results reviled that the temperature and velocity of the fluid rise with increasing values of variable thermal conductivity parameter. Also, the temperature and normal velocity of the fluid in case of Cu-water nanoparticles is more than that of Al2O3- water nanofluid. On the other hand, the axial velocity of the fluid in case of Al2O3- water nanofluid is more than that of TiO2nanoparticles. In addition, the current outcomes are matched with the previously published consequences and initiate to be a good contract as a limiting sense.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


Author(s):  
F. I. Molina-Herrera ◽  
C. O. Castillo-Araiza ◽  
H. Jiménez-Islas ◽  
F. López-Isunza

Abstract This is a theoretical study about the influence of turbulence on momentum and heat transport in a packed-bed with low tube to particle diameter ratio. The hydrodynamics is given here by the time-averaged Navier-Stokes equations including Darcy and Forchheimer terms, plus a κ-ε two-equation model to describe a 2D pseudo-homogeneous medium. For comparison, an equivalent conventional flow model has also been tested. Both models are coupled to a heat transport equation and they are solved using spatial discretization with orthogonal collocation, while the time derivative is discretized by an implicit Euler scheme. We compared the prediction of radial and axial temperature observations from a packed-bed at particle Reynolds numbers (Rep) of 630, 767, and 1000. The conventional flow model uses effective heat transport parameters: wall heat transfer coefficient (hw) and thermal conductivity (keff), whereas the turbulent flow model includes a turbulent thermal conductivity (kt), estimating hw via least-squares with Levenberg-Marquardt method. Although predictions of axial and radial measured temperature profiles with both models show small differences, the calculated radial profiles of the axial velocity component are very different. We demonstrate that the model that includes turbulence compares well with mass flux measurements at the packed-bed inlet, yielding an error of 0.77 % in mass flux balance at Rep = 630. We suggest that this approach can be used efficiently for the hydrodynamics characterization and design and scale-up of packed beds with low tube to particle diameter ratio in several industrial applications.


Magnetorheological Fluids (MRFs) are considered as smart fluids because they control viscosity using external magnetic field. It contains ferro-magnetic powder which are aligned in magnetic flux lines. The magnetic force between particles are controlled by magnetic field intensity. This controllable viscosity makes them acceptable in many mechanical applications, but due to difference in density between suspended particles and carrier fluid sedimentation is bound to occur. This thus creates the need of some additives. In our study, silica Nano particles (commercially known as Aerosil 200) is used as stabilizer and Oleic Acid is used as surfactant and their effect on sedimentation is studied in this article. Some other synthesis parameters like particle concentration, stirring duration and material loading also cause some change in sedimentation rate.


2021 ◽  
Vol 409 ◽  
pp. 95-109
Author(s):  
Ephesus Olusoji Fatunmbi ◽  
Samuel Segun Okoya

An analysis of nonlinear mixed convection transport of hydromagnetic Casson nanofluid over a nonlinear stretching sheet near a stagnation point is deliberated in this study. The flow is confined in a porous device in the presence of thermophoresis, Ohmic heating, non-uniform heat source with temperature-dependent thermal conductivity associated with haphazard motion of tiny particles. The transport equations are translated from nonlinear partial differential equations into ordinary ones via similarity transformation technique and subsequently tackled with shooting method coupled with Runge-Kutta Fehlberg algorithm. The significant contributions of the embedded parameters on the dimensionless quantities are graphically depicted and deliberated while the numerical results strongly agree with related published studies in the limiting conditions. It is found that a rise in the magnitude of Casson fluid parameter decelerates the fluid flow while enhancing the viscous drag and thermal profiles. The inclusion of the nonlinear convection term aids fluid flow whereas heat transfer reduces with growth in the thermophoresis and Brownian motion terms.


Sign in / Sign up

Export Citation Format

Share Document