scholarly journals Bioprospecting of cow's ruminal microbiota from a slaughterhouse in Ambarawa, Central Java, Indonesia

2021 ◽  
Vol 22 (11) ◽  
Author(s):  
RETNO MURWANI ◽  
MADA TRIANDALA SIBERO ◽  
POLA RISDA ASWITA SILITONGA ◽  
AMBARIYANTO AMBARIYANTO

Abstract. Murwani R, Sibero MT, Silitonga PRA, Ambariyanto A. 2021. Bioprospecting of cow's ruminal microbiota from a slaughterhouse in Ambarawa, Central Java, Indonesia. Biodiversitas 22: 5030-5038. Ruminal microorganisms play essential roles in maintaining ruminant health. However, most studies focused only on ruminal lactic acid bacteria (LAB), although other ruminal microorganisms might have biological properties for biotechnological purposes. Therefore, the current study aimed to isolate ruminal bacteria (LAB and non-LAB) and fungi from ruminal material and conducted a bioprospecting study to understand their ability to produce antibacterial compounds and polysaccharide-degrading enzymes. The ruminal bacteria were isolated on MRS and ISP4 agar, while PDA was used to isolate the different fungi. The antibacterial property was tested against multidrug-resistant Escherichia coli and Salmonella enterica ser. Typhi. The ability to produce agarase, alginate-lyase, and carrageenase was screened. Prospective isolates were identified using DNA barcoding approach. Twelve bacteria were isolated using MRS agar, six from ISP4 agar, and four fungi from PDA. Among twelve bacteria from MRS agar, eleven were considered LAB, which consisted of Lactobacillus plantarum and Pediococcus acidilactici. Several classes of bacteria such as actinobacteria, firmicutes, ?-proteobacteria, and ?-proteobacteria were isolated during this study. In addition, three fungal classes, namely Saccharomycetes, Eurotiomycetes, and Mucoromycetes were also isolated. All bacteria from MRS agar were suggested to have potential compounds with antimicrobial activity, while all ruminal fungi exhibited potential sources of polysaccharide-degrading enzymes.

Author(s):  
Kathakali Nath ◽  
Anupam Das Talukdar ◽  
Mrinal Kanti Bhattacharya ◽  
Deepshikha Bhowmik ◽  
Shiela Chetri ◽  
...  

Abstract Background Rapid emergence of multidrug resistant (MDR) organisms in hospital and community settings often result into treatment failure, thus leading the clinicians with fewer treatment options. Cyathea gigantea, an ethnomedicinally important fern used in cuts and wound infections. So, if this medicinal plant is used in treating the MDR infections then it might bring certain relief in future treatment options. Methods Antibacterial activity of C. gigantea against MDR bacteria was assed using well diffusion and broth microdilution methods to determine the diameters of growth inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Synergistic activity was also determined with the conventional antibiotics by disc diffusion method followed by FIC index of each of the tested antibiotic was calculated. The active extract was then subjected to fractionation by column chromatography and antibacterial activity was done with each of the collected fractions. Results Crude extract of C. gigantea was found to be active against all the tested organisms. The MIC was 200 μg/ml against Gram-positive i.e., Staphylococcus aureus ATCC 25923 and 400 μg/ml against Gram-negative i.e., Escherichia coli ATCC 25922 and Pseudomonas aeruginosa PAO1, while the MBC was 400 μg/ml in case of Gram-positive and 800 μg/ml for Gram-negative. The synergistic activity revealed that the plant extract increased the antibacterial property of the studied antibiotics and the FIC index showed that significant synergistic activity was shown by ciprofloxacin followed by tetracycline, ampicillin and oxacillin. Antibacterial activity with the fractionated extract showed that the FR II, FR III and FR IV were active against both Gram-positive and Gram-negative bacteria, whereas FR I, FR V and FR VI did not show antibacterial property against any of the tested bacteria. Conclusions Extracts of C. gigantea was found active against both selected Gram-positive and Gram-negative organisms and thus offers the scientific basis for the traditional use of the fern. The present study also provides the basis for future study to validate the possible use against multidrug resistant organisms.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmin Neves Vieira Sabino ◽  
Mateus Ferreira Santana ◽  
Linda Boniface Oyama ◽  
Fernanda Godoy Santos ◽  
Ana Júlia Silva Moreira ◽  
...  

AbstractInfections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


1994 ◽  
Vol 304 (1) ◽  
pp. 271-279 ◽  
Author(s):  
M Tarui ◽  
M Doi ◽  
T Ishida ◽  
M Inoue ◽  
S Nakaike ◽  
...  

NC-182 is a novel anti-tumour compound having a benzo[a]phenazine ring. Fluorescence, absorption and c.d. spectroscopy, as well as viscometric titrations, were systematically performed to investigate the interaction mode of this drug with DNA and its effect on DNA conformation, based on comparative measurements with distamycin (DNA minor-groove binder) and daunomycin (DNA-base intercalator). NC-182 was found to be a potent intercalator of DNA, especially the B-form DNA, although no specificity was observed against the base-pair. The binding of NC-182 to B-DNA behaves biphasically, depending on the molar ratio (r) of drug to DNA: NC-182 acts to render the B-form structure rigid at relatively low r value and to promote the transformation of B- to non-B forms at high r values. It was also shown that NC-182 promotes the unwinding of Z-form DNA to B-form. Viscometric, u.v. ‘melting’ and c.d. experiments further showed that (1) the DNA duplex structure is thermally stabilized by intercalation with NC-182 and (2) the intercalation of NC-182 into a poly(dA).2poly(dT) DNA structure thermally stabilizes the triplex structure, resulting in a melting point close to that of the duplex structure; the melting curves of triplex and duplex structures coincide at r > 0.06. These observations make a significant contribution to our understanding of the biological properties of this novel benzo[a]phenazine derivative, a new anti-tumour tumour agent against multidrug-resistant and sensitive tumours.


2011 ◽  
Vol 40 (5) ◽  
pp. 1121-1127 ◽  
Author(s):  
Juliana Silva de Oliveira ◽  
Augusto César de Queiroz ◽  
Hilário Cuquetto Mantovani ◽  
Marcelo Rodrigues de Melo ◽  
Edenio Detmann ◽  
...  

The objective of this work was to evaluate the effect of the levels of lactic and propionic acids on in vitro fermentation of ruminal microorganisms. In experiment 1, the levels, in a total of 12 were the following: addition of 0 (control 1), 50, 100, 150, 200 and 250 mM of lactic acid and 0 (control 2), 50, 100, 150, 200 and 250 mM of propionic acid, respectively, in incubation flasks, which contained ruminal inoculum, glucose and synthetic culture medium, with two repetitions for each combination. In experiment 2, the combinations, in a total of 4, were the following: presence of 12 and 24 mM of propionic acid and 0 mg of glucose, respectively; presence of 12 and 24 mM of propionic acid and 40 mg of glucose, respectively, to the incubation flasks which contained ruminal inoculum, with or without glucose and in synthetic culture medium with two repetitions each. There was no effect on the specific growth velocity of ruminal microorganisms in the presence of lactic acid or propionic acid. However, when there were greater concentrations of these acids in the media, there was a longer lag phase in the microorganism phase. Acid propionic at the concentration of 24 mM inhibited the production of acid acetic and butyric acid in a media with glucose. Despite of not being used as a source of energy by the ruminal microorganisms, propionic acid affects their metabolism. Lactic and propionic acids inhibit growth of some ruminal microorganisms at elevated concentrations.


2020 ◽  
Vol 3 (3) ◽  
pp. 33-37
Author(s):  
Oscar M Mosquera ◽  
◽  
Roman Y. Ramirez-Rueda ◽  
Aura M. Blandon ◽  
◽  
...  

Species of Piper genus are known for their numerous biological activities and their diverse phytochemical composition. The object of this work was to evaluate the antibacterial activity of extracts obtained from seven Piperaceae species. Broth microdilution technique was used for biological evaluation and some phytochemical nuclei present in the bioactive extracts were identified by thin layer chromatography and characterization reactions. Among the most important results, it is highlighted the inhibitory effect of the methanolic extract from Piper pesaresanum against Methicillin-resistant Staphylococcus aureus ATTC 43300, with minimum inhibitory concentration of 62.5 μg/mL. Additionally, secondary metabolites such as alkaloids, phenols and flavonoids were detected in this extract. In conclussion, the species P. pesaresanum showed high potential for bioguided search of antibacterial compounds against multidrug resistant S. aureus.


Author(s):  
Widya Kurnianingsih ◽  
◽  
Didik Gunawan Tamtomo ◽  
Bhisma Murti ◽  
◽  
...  

Background: Multidrug Resistant Tuberculosis (MDR-TB) is a highest problem in the prevention and eradication of TB worldwide. MDR-TB exists in 27 countries where there are at least 6,800 MDR-TB cases annually and 12% of new TB cases registered are MDR TB. This study aimed to examine the effect of incomplete medication intake on the incidence of MDR TB. Subjects and Method: Meta-analysis and systematic review was conducted by collecting articles from Google Scholar, Pubmed, and Springer Link databases, from year 2010 to 2019. Keywords used “Risk Factor MDR TB” OR “Previous Treatment” AND “Multidrug resistant tuberculosis”. The inclusion criteria were full text, using English language, using case control study design, and reporting adjusted odds ratio. The study population was patients with Tuberculosis. The intervention was incomplete medication intake with comparison complete medication intake. The study outcome was multidrug resistant Tuberculosis. Collected articles were selected by PRISMA flow chart. Quantitative data were analyzed by fixed effect model using Revman 5.3. Results: 6 studies from Taiwan, Bangladesh, Malaysia, and Ethiophia were selected for data analysis. This study reported that incomplete medication intake increased the risk of multidrug resistant tuberculosis (aOR= 14.33; 95% CI= 12.47 to 16.47; p<0.001). Conclusion: Incomplete medication intake increases the risk of multidrug resistant Tuberculosis. Keywords: incomplete medication intake, multidrug resistant tuberculosis Correspondence: Widya Kurnianingsih. Masters Program in Public Health. Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Central Java. Email: [email protected]. Mobile: 081556837033


Author(s):  
Ángel Serrano-Aroca ◽  
Salvador Pous-Serrano

Worldwide, hernia repair represents one of the most frequent surgical procedures encompassing a global market valued at several billion dollars. This type of surgery usually requires the implantation of a mesh that needs the appropriate chemical, physical and biological properties for the type of repair. This review thus presents a description of the types of hernias, current hernia repair methods, and the state of the art of prosthetic meshes for hernia repair providing the most important meshes used in clinical practice by surgeons working in this area classified according to their biological or chemical nature, morphology and whether bioabsorbable or not. We emphasise the importance of surgical site infection in herniatology, how to deal with this microbial problem, and we go further into the future research lines on the production of advanced antimicrobial meshes to improve hernia repair and prevent microbial infections, including multidrug-resistant strains. A great deal of progress has been made in this biomedical field in the last decade. However, we are still far from an ideal antimicrobial mesh that can also provide excellent integration to the abdominal wall, mechanical performance, low visceral adhesion and minimal inflammatory or foreign body reactions, among many other problems.


2017 ◽  
Vol 50 (1) ◽  
pp. 28 ◽  
Author(s):  
Ira Widjiastuti ◽  
Adioro Soetojo ◽  
Febriastuti Cahyani

Background: In deep dentinal caries cases, bacteria mostly found are Lactobacillus acidophilus classified as gram positive bacteria and as facultative aerobes producing glucosyltransferase (GTF) enzyme. GTF enzyme can alter sucrose into glucans. Glucan is sticky and insoluble in water. As a result, GTF enzyme can facilitate plaque formation and microorganism colonization on tooth surface. In addition, Lactobacillus acidophilus also can form acid leading to demineralization of organic and inorganic materials, resulting in dental caries. Multidrug-resistant phenomena, on the other hand, have led to the use of natural resources, one of which is propolis as an antimicrobial material and as a new anti-infective therapeutic strategy. Propolis is a resinous substances collected by worker bees (Apismellifera) from barks and leaves of plants. Propolis has a complex chemical composition and biological properties, such as antibacterial, antiviral, antifungal, anti-inflammatory, and antitumor. Purpose: This research aimed to reveal anti-glucan effects of propolis ethanol extract generated from honey bee, Apis mellifera spp on Lactobacillus acidophilus bacteria. Method: Before antiglucan test was conducted, glucan-formation test was performed on Lactobacillus acidophilus bacteria using SDSpage. Meanwhile, anti-glucan adhesion test on Lactobacillus acidophilus bacteria was carried by culturing the bacteria at 37ºC temperature in a jar with 10% CO2. Test tubes were placed at an angle of 30º for 18 hours to review the attachment of bacteria at the glass surfaces. After the incubation, the culture of bacteria was vibrated using a mixer vortex for a few minutes, and then cultured in solid MRS A media. Bacteria grown were measured by using colony counter. Result: The ethanol extract of propolis with a concentration of 1.56% was the lowest concentration inhibiting the attachment of glucan to Lactobacillus acidophilus bacteria. Conclusion: The ethanol extract of propolis with a concentration of 1.56% can be used as an anti-glucan material for Lactobacillus acidophilus bacteria.


Sign in / Sign up

Export Citation Format

Share Document