Evidence of in Situ Cirrus Formation in the Tropical Tropopause Layer over the Southwestern Indian Ocean 

Author(s):  
Stephanie Evan ◽  
Irene Reinares Martinez ◽  
Frank G. Wienhold ◽  
Jerome Brioude ◽  
Eric J. Jensen ◽  
...  

<p>A nascent in situ cirrus was observed on 11 January 2019 in the tropical tropopause layer (TTL) over the southwestern Indian Ocean, with the use of balloon-borne instruments. Data from CFH (Cryogenic Frost Point Hygrometer) and COBALD (Compact Optical Backscatter and AerosoL Detector) instruments were used to characterize the cirrus and its environment. Optical modeling was employed to estimate the cirrus microphysical<br>properties from the COBALD backscatter measurements. Newly-formed ice crystals with radius <1 μm and concentration ∼500 L <sup>−1</sup> were reported at the tropopause. The relatively low concentration and CFH ice supersaturation (1.5) suggests a homogeneous freezing event stalled by a high-frequency gravity wave. The observed vertical wind speed and temperature anomalies that triggered the cirrus formation were due to a 1.5-km vertical-<br>scale wave, as shown by a spectral analysis. This cirrus observation shortly after nucleation is beyond remote sensing capabilities and presents a type of cirrus never reported before.</p>

2020 ◽  
Author(s):  
Damien Héron ◽  
Stephanie Evan ◽  
Jerome Brioude ◽  
Joris Pianezze ◽  
Thibault Dauhut ◽  
...  

<p>Stratospheric water vapor variations play an important role on the climate. Predictions of changes in stratospheric humidity are uncertain because of gaps in our understanding of physical processes occurring in the TTL, between 14 and 20 km altitude. In particular, climate models have great difficulties in modelling water vapor variations in the TTL due to a poor representation of tropical convection, which largely controls the vertical transport of water vapor to UTLS, among other things.</p><p>One of the scientific objectives of the CONCIRTO<sup>5</sup> program is to better understand the role of marine deep convective systems, and tropical cyclones in particular, on the hydration of TTL in the Southwestern Indian Ocean.  In March 2017, a rapid deepening of the tropical cyclone Enawo occured north-west of Reunion island before to strike and cross Madagascar from north to south. The progressive intensification of the cyclone to the intense tropical cyclone stage makes it an ideal case study to analyze the transport of water vapor and hydrometeors in the TTL according to the intensity phase of the cyclone. </p><p>We will present modelling results on water vapor transport into the TTL in March 4 during ENAWO’s intensification. On March 4, the mesoscale model Meso-NH simulated a large water vapour transport through the TTL, associated with the injection of ice through the tropopause and the observation of cirrus clouds. The model validation is done by comparison with satellite data (CALIPSO, Meteosat-8). We generalize the intrusion modelling during ENAWO intensification by comparing the brightness temperature observed above the tropical cyclones and the tropical tropopause temperature extracted from ECMWF-Analysis during the 2016-2017 cyclonic season. From these studies, we can estimate the number of intrusions during a cyclonic season and the cyclonic intensity associated with the intrusions.</p><p> </p><p><sup>5</sup>Effects of convection and cirrus clouds on the Tropical Tropopause Layer over the Indian Ocean</p>


2009 ◽  
Vol 9 (5) ◽  
pp. 20631-20675 ◽  
Author(s):  
E. J. Jensen ◽  
L. Pfister ◽  
T.-P. Bui ◽  
P. Lawson ◽  
D. Baumgardner

Abstract. In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.


2010 ◽  
Vol 10 (3) ◽  
pp. 1369-1384 ◽  
Author(s):  
E. J. Jensen ◽  
L. Pfister ◽  
T.-P. Bui ◽  
P. Lawson ◽  
D. Baumgardner

Abstract. In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics) actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.


2021 ◽  
Vol 21 (15) ◽  
pp. 11689-11722
Author(s):  
Ralf Weigel ◽  
Christoph Mahnke ◽  
Manuel Baumgartner ◽  
Antonis Dragoneas ◽  
Bärbel Vogel ◽  
...  

Abstract. During the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal, with eight mission flights of the M-55 Geophysica in the upper troposphere–lower stratosphere (UTLS) of the Asian monsoon anticyclone (AMA) over northern India, Nepal, and Bangladesh. More than 100 events of new particle formation (NPF) were observed. In total, more than 2 h of flight time was spent under NPF conditions as indicated by the abundant presence of nucleation-mode aerosols, i.e. with particle diameters dp smaller than 15 nm, which were detected in situ by means of condensation nuclei counting techniques. Mixing ratios of nucleation-mode particles (nnm) of up to ∼ 50 000 mg−1 were measured at heights of 15–16 km (θ ≈ 370 K). NPF was most frequently observed at ∼ 12–16 km altitude (θ ≈ 355–380 K) and mainly below the tropopause. Resulting nnm remained elevated (∼ 300–2000 mg−1) up to altitudes of ∼ 17.5 km (θ ≈ 400 K), while under NPF conditions the fraction (f) of sub-micrometre-sized non-volatile residues (dp > 10 nm) remained below 50 %. At ∼ 12–14 km (θ ≈ 355–365 K) the minimum of f (< 15 %) was found, and underneath, the median f generally remains below 25 %. The persistence of particles at nucleation-mode sizes is limited to a few hours, mainly due to coagulation, as demonstrated by a numerical simulation. The frequency of NPF events observed during StratoClim 2017 underlines the importance of the AMA as a source region for UTLS aerosols and for the formation and maintenance of the Asian tropopause aerosol layer (ATAL). The observed abundance of NPF-produced nucleation-mode particles within the AMA is not unambiguously attributable to (a) specific source regions in the boundary layer (according to backward trajectory analyses), or (b) the direct supply with precursor material by convective updraught (from correlations of NPF with carbon monoxide), or (c) the recent release of NPF-capable material from the convective outflow (according to air mass transport times in the tropical tropopause layer, TTL). Temperature anomalies with ΔT of 2 K (peak-to-peak amplitude), as observed at a horizontal wavelength of ∼ 70–100 km during a level flight of several hours, match with NPF detections and represent an additional mechanism for local increases in supersaturation of the NPF precursors. Effective precursor supply and widely distributed temperature anomalies within the AMA can explain the higher frequency of intense NPF observed during StratoClim 2017 than all previous NPF detections with COPAS (COndensation PArticle counting System) at TTL levels over Brazil, northern Australia, or West Africa.


2020 ◽  
Vol 20 (17) ◽  
pp. 10565-10586
Author(s):  
Stephanie Evan ◽  
Jerome Brioude ◽  
Karen Rosenlof ◽  
Sean M. Davis ◽  
Holger Vömel ◽  
...  

Abstract. Balloon-borne measurements of cryogenic frost-point hygrometer (CFH) water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory on Réunion Island in the southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on tropical tropopause layer (TTL) composition. The balloon launches were specifically planned using a Lagrangian model and Meteosat-7 infrared images to sample the convective outflow from tropical storm (TS) Corentin on 25 January 2016 and tropical cyclone (TC) Enawo on 3 March 2017. Comparing the CFH profile to Aura's Microwave Limb Sounder's (MLS) monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121 hPa), originated from convectively active regions of TS Corentin and TC Enawo 1 d before the planned balloon launches according to the Lagrangian trajectories. Near the tropopause region, air masses on 25 January 2016 were anomalously dry around 100 hPa and were traced back to TS Corentin's active convective region where cirrus clouds and deep convective clouds may have dried the layer. An anomalously wet layer around 68 hPa was traced back to the southeast Indian Ocean where a monthly water vapor anomaly of 0.5 ppmv was observed. In contrast, no water vapor anomaly was found near or above the tropopause region on 3 March 2017 over Maïdo as the tropopause region was not downwind of TC Enawo. This study compares and contrasts the impact of two tropical cyclones on the humidification of the TTL over the SWIO. It also demonstrates the need for accurate balloon-borne measurements of water vapor, ozone and aerosols in regions where TTL in situ observations are sparse.


2003 ◽  
Vol 3 (4) ◽  
pp. 1083-1091 ◽  
Author(s):  
Th. Peter ◽  
B. P. Luo ◽  
M. Wirth ◽  
C. Kiemle ◽  
H. Flentje ◽  
...  

Abstract. Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere.


2010 ◽  
Vol 10 (8) ◽  
pp. 3615-3627 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K) and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more). When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on gas-phase tracer TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights. Above the TTL this fraction increases to 0.3±0.1 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10° N and 25° N where isentropic mixing between these two regions may occur.


2016 ◽  
Vol 16 (18) ◽  
pp. 12273-12286 ◽  
Author(s):  
Sergey M. Khaykin ◽  
Jean-Pierre Pommereau ◽  
Emmanuel D. Riviere ◽  
Gerhard Held ◽  
Felix Ploeger ◽  
...  

Abstract. High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular sounding, performed on a convective day and revealing water vapour enhancements of up to 0.6 ppmv as high as the 404 K (17.8 km) level. These are shown to originate from convective overshoots upwind detected by an S-band weather radar operating locally in Bauru. The accurate in situ observations uncover two independent moisture pathways into the tropical lower stratosphere, which are hardly detectable by space-borne sounders. We argue that the moistening by horizontal transport is limited by the weak meridional gradients of water, whereas the fast convective cross-tropopause transport, largely missed by global models, can have a substantial effect, at least at a regional scale.


2013 ◽  
Vol 13 (19) ◽  
pp. 9801-9818 ◽  
Author(s):  
P. Spichtinger ◽  
M. Krämer

Abstract. The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL) remains an enigma that is intensely debated as the "ice supersaturation puzzle". However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause "ice supersaturation puzzle" has become an "ice nucleation puzzle". To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results are composed from scenarios with consecutive heterogeneous and homogeneous ice formation and scenarios with pure homogeneous ice formation occurring in very slow (< 1 cm s−1) and faster (> 1 cm s−1) large-scale updraughts, respectively. This statistical analysis shows that about 80% of TTL cirrus can be explained by "classical" homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.


2006 ◽  
Vol 6 (6) ◽  
pp. 12469-12501 ◽  
Author(s):  
G. Durry ◽  
N. Huret ◽  
A. Hauchecorne ◽  
V. Marecal ◽  
J.-P. Pommereau ◽  
...  

Abstract. The micro-SDLA balloonborne diode laser spectrometer was flown twice from Bauru (22° S, Brazil) in February 2004 during HIBISCUS to yield in situ H2O measurements in the Upper Troposphere (UT) and Lower Stratosphere (LS) and in particular in the Tropical Tropopause Layer (TTL). The overall TTL was found warmer (with a subsaturated cold point near –79°C) and the LS moister compared to former measurements obtained in tropical oceanic conditions. The use of specific balloons with a slow descent, combined with the high-resolution of the laser sensor, allowed us to observe in situ in the UT, the TTL and the LS several thin layers correlated on H2O, CH4, O3, temperature and PV. A component of these layers is associated with the isentropic transport into the UT- LS of extratropical stratospheric air masses. Moreover, the examination of temperature and tracer (CH4, O3) profiles gives insights on the potential contribution of convective transport of H2O in the TTL.


Sign in / Sign up

Export Citation Format

Share Document