biological surface
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
pp. 21-34
Author(s):  
Deyuan Zhang ◽  
Huawei Chen ◽  
Yonggang Jiang ◽  
Jun Cai ◽  
Lin Feng ◽  
...  

2022 ◽  
pp. 127-150
Author(s):  
Deyuan Zhang ◽  
Huawei Chen ◽  
Yonggang Jiang ◽  
Jun Cai ◽  
Lin Feng ◽  
...  

Coronaviruses ◽  
2021 ◽  
Vol 02 ◽  
Author(s):  
Sandeep Kumar Shukla ◽  
Ajay Kumar Sharma ◽  
Aman Kalonia ◽  
Priyanka Shaw

: Covid 19 is a pandemic disease spread almost in the whole world. To date, no medical advancement to curb the virus. Coronavirus is an enveloped virus transmitted from the biological and non-biological surface by direct or indirect contact. Limited literature revealed that the enveloped virus can be killed by disinfectants. There are many biocidal agents used for decontamination of the virus, yet they have many issues like toxicity, killing time, activation requirement, etc. Some are specific to the inanimate surface but not used by a human being. This situation showed an urgent need for a biocidal agent which can act on biological as well as non-biological surfaces without any potential toxicity. Moreover, it should be easy to handle, inexpensive, and safe for the environment. Hypochlorous acid is a weak acid that acts as a powerful disinfectant and shows biocidal efficacy against a wide range of microorganisms. Hypochlorous acid is simple to use, inexpensive, eco-friendly, non-toxic, and stable. The properties of HOCl can be regulated at the site of preparation and therefore, its compliance is high. Hypochlorous acid seems to be a promising agent in disinfection and sterilization in healthcare facilities. Due to its diverse biocidal actions, it may be used as a potent disinfectant against novel coronavirus.


2021 ◽  
Author(s):  
Amirhossein Tavangar ◽  
Priyatha Premanth ◽  
Bo Tan ◽  
Krishnan Venkatakrishnan

Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing directions. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that are repellent to cancer cells but favourable for other types of cells.


2021 ◽  
Author(s):  
Amirhossein Tavangar ◽  
Priyatha Premanth ◽  
Bo Tan ◽  
Krishnan Venkatakrishnan

Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing directions. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that are repellent to cancer cells but favourable for other types of cells.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chun-Li Liu ◽  
Jun Yang ◽  
Xiao-Han Bai ◽  
Zhi-Kai Cao ◽  
Chen Yang ◽  
...  

AbstractBacterial infection especially caused by multidrug-resistant bacteria still endangers human life. Photodynamic therapy (PDT) can effectively kill bacteria, and nanofiber-based PDT can effectively reduce damage to normal tissues. However, current photosensitizers coated on the surfaces of fibers would release to the wound, causing some side effects. And nanofibers prepared by traditional method exhibit poor adhesion on the wound, which severely reduces the PDT effect due to its short-range effect. Herein, core–shell curcumin composite nanofibers are prepared by in situ electrospinning method via a self-made portable electrospinning device. The obtained composite nanofibers show superior adhesiveness on different biological surface than that of traditional preparation method. Upon 808-nm irradiation, these composite nanofibers effectively produced singlet oxygen (1O2) without curcumin falling off. After these composite nanofibers’ exposure to drug-resistant bacteria, they exhibit dual antibacterial behaviors and efficiently kill the drug-resistant bacteria. These dual antibacterial nanofiber membranes with excellent adhesiveness may benefit the application of wound infection as antibacterial dressing.


2021 ◽  
Vol 16 (1) ◽  
pp. 94-104
Author(s):  
А.Е. Abaturov

Biosuragents are a heterogeneous group of biological surface-active amphiphilic compounds. The producers of biosurfactants are various microorganisms: bacteria and fungi. The class of biosurfactants consists of two groups: low molecular weight and high molecular weight compounds. Representatives of low molecular weight compounds are lipopeptides, glycolipids, fatty acids, phospholipids that reduce surface and interfacial tension, and high molecular weight compounds are polymer and dispersed biosurfactants, which are emulsion stabilizers. The most studied biosurfactants with the potential of drugs are lipopeptides and glycolipids. A subgroup of lipopeptides are polymyxins, pseudo-factins, putisolvins, surfactin, fengycin and others; and glycoli­pids — rhamnolipids, trehalose, sophorose, cellobiose, mannosileritritol lipids, and others. Biosurfactants play a key role in the life of biofilms: they regulate the adhesion of bacteria and biofilm matrix, support the functioning of the matrix channels, providing the nutrient needs of bacteria. It has also been shown that biosurfactants are involved in the formation and dispersion of formed biofilms. These substances, directly reacting with the components of the matrix, induce degradation of the biofilm. Biosurfing agents, possessing antimicrobial, antifungal and antiviral, and antitumor properties, are a promising class of compounds that, possessing a combination of antibacterial and antibiofilm action, open up new perspectives in the treatment of recurrent chronic infectious di­seases. It is believed that surface-active compounds, both representatives of lipopeptides and glycolipids, can be the molecular basis for the development of drugs that will enhance the effectiveness of antibiotic therapy for problem infections, especially those caused by antibiotic-resistant strains.


2021 ◽  
Author(s):  
Ching-min Yeh ◽  
Thomas Jarrett ◽  
Yuan Gao ◽  
Chun-Xia Zhao ◽  
Andrew Whittaker ◽  
...  

<p>Designer biosurfactants can be used to stabilise and functionalise interfaces. One particularly promising use is the stabilisation of oil-in-water emulsions, enabling fine tuning physical, chemical and biological surface properties. The ability of emulsion systems to carry high payloads makes them attractive for applications in medicine, food and fragrances, and cosmetics. However, they have limited long-term stability. Here we sought to use the metal ion-chelating ability of the biosurfactant peptide, AM1, to precipitate the formation of a gold metal shell on AM1-stabilised emulsions by electroless plating. We found that replacing the commonly used zinc(II) with palladium(II) for coordination by histidine residues of adjacent AM1 peptides produced interfacial films that maintained elasticity at acidic pH. Proton NMR suggested a coordination mechanism independent of the imidazole ring of the histidines. Nevertheless. stabilisation of emulsions at low pH enabled the deposition of a gold shell, albeit by an unexpected mechanism. We propose that gold nanoparticles forming in bulk are adsorbed onto the peptide-stabilised interface, accumulating into a particulate coating. The resulting one-step method for nanoparticle precipitation and shell formation will be useful for the creation of biocompatible core-shell particles for applications where large payloads of hydrophobic active compounds require stability over long time periods.</p>


2021 ◽  
Author(s):  
Ching-min Yeh ◽  
Thomas Jarrett ◽  
Yuan Gao ◽  
Chun-Xia Zhao ◽  
Andrew Whittaker ◽  
...  

<p>Designer biosurfactants can be used to stabilise and functionalise interfaces. One particularly promising use is the stabilisation of oil-in-water emulsions, enabling fine tuning physical, chemical and biological surface properties. The ability of emulsion systems to carry high payloads makes them attractive for applications in medicine, food and fragrances, and cosmetics. However, they have limited long-term stability. Here we sought to use the metal ion-chelating ability of the biosurfactant peptide, AM1, to precipitate the formation of a gold metal shell on AM1-stabilised emulsions by electroless plating. We found that replacing the commonly used zinc(II) with palladium(II) for coordination by histidine residues of adjacent AM1 peptides produced interfacial films that maintained elasticity at acidic pH. Proton NMR suggested a coordination mechanism independent of the imidazole ring of the histidines. Nevertheless. stabilisation of emulsions at low pH enabled the deposition of a gold shell, albeit by an unexpected mechanism. We propose that gold nanoparticles forming in bulk are adsorbed onto the peptide-stabilised interface, accumulating into a particulate coating. The resulting one-step method for nanoparticle precipitation and shell formation will be useful for the creation of biocompatible core-shell particles for applications where large payloads of hydrophobic active compounds require stability over long time periods.</p>


Sign in / Sign up

Export Citation Format

Share Document