pyrolysis fuel oil
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6280
Author(s):  
Seon Ho Lee ◽  
Song Mi Lee ◽  
Seungjoo Park ◽  
Seong-Ho Yoon ◽  
Haksoo Han ◽  
...  

An inexpensive and general-purpose carbon fiber was prepared using coal tar pitch. In contrast to the solvent extraction process employing expensive solvents, a low-cost centrifugal separation method facilitated the reduction of loss due to the pitch purification and an overall yield increase. The coal tar pitch purified by centrifugation and subsequently co-carbonized with pyrolysis fuel oil improved in spinnability. Moreover, the resulting spinnable pitch had a softening point of 250 °C. The obtained carbon fibers were heat-treated at 1000 °C for 5 min, resulting in a tensile strength of approximately 1000 MPa and an average diameter of 9 μm. In this study, we present an effective method for obtaining low-cost general-purpose isotropic carbon fibers.


Author(s):  
Dedy Setyo Oetomo ◽  
Rizky Fajar Ramdhani

ABSTRACT The petrochemical industry, especially the petrochemical industry in Teluk Bintuni Regency, West Papua Province, is an industry engaged in natural gas processing by considering the needs of the Upstream Plastic Product Industry Market and its use in supporting human activities. It is hoped that the integration of the upstream-downstream industry can build a strong supply chain. This is in line with the application of industry 4.0 according to the roadmap of Making Indonesia 4.0, which aims to increase the competitiveness of the national industry in the global arena. Examples of upstream petrochemical industry products include methanol, ethylene, propylene, butadiene, benzene, toluene, xylene, coproduct fuels, petrol pyrolysis, fuel oil pyrolysis, raffinate, and C4 mixtures. The analysis developed is using an Industrial Tree Model and porter's value chain analysis and supply chain analysis. The results of this research are seven points.    


Author(s):  
S.V. Mayani

Colossal quantity of wastewater contaminated with persistent hazardous substances and degradable toxic compounds to the atmosphere are generated annually. Amongst the particular pollutant, chemicals, organic dyestuffs are of a considerable significance by virtue of its applications in fibers, fabric, coloring element, printed matter and manuring production. The present chapter comprises a complete perspective of green and sustainable organic-inorganic metal nanocomposites for heterogeneous chemical curtail of precarious organic noxious tinge (Chromotrope-2R, Eosin-Y and Methylene Blue) and energy storage (H2 and C2H4). The nanocomposites were designed by simple strategy adopting nanostructured porous carbon material developed from reasonable pyrolysis fuel oil (PFO) related pitch remains.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Jin Ung Hwang ◽  
Won Jun Ahn ◽  
Ji Sun Im ◽  
Jong Dae Lee

AbstractSynthetic graphite is produced by a heat treatment process using a carbon precursor (pitch, coke), but it is difficult to produce synthetic graphite of high quality due to the high-temperature process (minimum 3000 °C). Elements used as additive to lower temperature the graphitic process include boron, phosphorus, and nitrogen. Boron is known as a graphitization additive, because it accelerates the homogeneous continuous graphitization process of the entire carbon without any formation of specific carbon components such as graphite. In this study, various amounts of boron and PFO (pyrolysis fuel oil, carbon precursor) were used in an attempt to reveal the boron additive effect. Pitch was produced using a boric acid and pyrolysis fuel oil (PFO), and high-temperature carbonization was carried out at 2600 °C. As a result, synthetic graphite exhibiting high crystallinity at a relatively low temperature was produced. The electrochemical performance of several boron-doped and non-doped carbon materials with different structures as anodes in lithium-ion batteries was investigated by a structure analysis.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1152
Author(s):  
Tatiana Kuchinskaya ◽  
Mariia Kniazeva ◽  
Vadim Samoilov ◽  
Anton Maximov

The hydrocracking reaction of a pyrolysis fuel oil fraction using in situ generated nano-sized NiWS-sulfide catalysts is studied. The obtained catalysts were defined using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The features of catalytically active phase generation, as well as its structure and morphology were considered. The catalytic reactivity of in situ generated catalysts was evaluated using the hydrocracking reaction of pyrolysis fuel oil to obtain a light fraction to be used as a feedstock for benzene, toluene, and xylene (BTX) production. It was demonstrated that the temperature of 380 °C, pressure of 5 MPa, and catalyst-to-feedstock ratio of 4% provide for a target fraction (IPB −180 °C) yield of 44 wt %, and the BTX yield of reaching 15 wt %.


2020 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Jae-Yeon Yang ◽  
Jong-Hyun Park ◽  
Yun-Su Kuk ◽  
Byoung-Suhk Kim ◽  
Min-Kang Seo

Carbon/carbon (C/C) composites are conventionally manufactured by liquid-phase impregnation (LPI), in which the binder pitches and phenolic resins are impregnated into the composites, and by chemical vapor infiltration (CVI). However, CVI has certain limitations in that expensive gases, such as methane and propane, are used and a long reaction time is required. Therefore, LPI is more widely used, as it employs economical pitches. In this study, the effects of one-step preparation on mechanical properties of C/C composites impregnated with mesophase binder pitches and phenolic resins have been investigated. The C/C composites containing four types of 20 wt.% mesophase binder pitches had differences in softening point (SP) and quinoline insoluble (QI) contents. After conducting trials on mesophase formation using different heat treatment temperatures and times, the best density and mechanical properties of the C/C composites were achieved using the mesophase binder pitches with 170 °C SP. However, when SP 200 °C was used, the density of the C/C composites was not further improved. This is because the binder pitches were not properly impregnated into the composites due to the high viscosity and QI of the binder pitches. Furthermore, the C/C composites fabricated with 20 wt.% pitch 2 exhibited the highest mechanical properties.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 47 ◽  
Author(s):  
Yong-Su Kim ◽  
Kye-Sung Cho ◽  
Yong-Kul Lee

The effects of desilication (DS) of the zeolite β on the hydrocracking of polycyclic aromatics were investigated using the Ni2P/β catalysts. The Ni2P/β catalysts were obtained by the temperature-programmed reduction (TPR) method, and the physical and chemical properties were examined by N2 physisorption, X-ray diffraction (XRD), 27Al magic angle spinning–nuclear magnetic resonance (27Al MAS NMR), extended X-ray absorption fine structure (EXAFS), isopropyl amine (IPA) and NH3 temperature-programmed desorption (TPD), CO uptake, and thermogravimetric analysis (TGA). The catalytic activity was examined at 653 K and 6.0 MPa in a continuous fixed bed reactor for the hydrocracking (HCK) of model compounds of 1-methylnaphthalene (1-MN) and phenanthrene or a real feedstock of pyrolysis fuel oil (PFO). Overall, the Ni2P/DS-β was observed as more active and stable in the hydrocracking of polycyclic aromatics than the Ni2P/β catalyst. In addition, the Ni2P/β suffered from the coke formation, while the Ni2P/DS-β maintained the catalytic stability, particularly in the presence of large polycyclic hydrocarbons in the feed.


2019 ◽  
Vol 29 (4) ◽  
pp. 369-376 ◽  
Author(s):  
Jong-Eun Choi ◽  
Seunghyun Ko ◽  
Young-Pyo Jeon

2019 ◽  
Vol 165 ◽  
pp. 467-472 ◽  
Author(s):  
Jae-Yeon Yang ◽  
Byoung-Suhk Kim ◽  
Soo-Jin Park ◽  
Kyong Yop Rhee ◽  
Min-Kang Seo

Sign in / Sign up

Export Citation Format

Share Document