scholarly journals Controlling of payload swinging of an overhead crane

2021 ◽  

Abstract A new two-level hierarchical approach to control the trolley position and payload swinging of an overhead crane is proposed. At the first level, a simple mathematical pendulum model is investigated considering the time delay due to the use of a vision system. In the second level, a chain model is developed, extending the previous pendulum model considering the vibration of the suspending chain. The relative displacement of the payload is measured with a vision sensor, and the rest of the state-space variables are determined by a collocated observer. The gain parameters related to the state variables of the chain vibration are determined by the use of a pole placement method. The proposed controller is verified by numerical simulation and experimentally on a laboratory test bench.

1961 ◽  
Vol 58 ◽  
pp. 1072-1077 ◽  
Author(s):  
Frank Stahl
Keyword(s):  

Author(s):  
Héctor Botero ◽  
Hernán Álvarez

This paper proposes a new composite observer capable of estimating the states and unknown (or changing) parameters of a chemical process, using some input-output measurements, the phenomenological based model and other available knowledge about the process. The proposed composite observer contains a classic observer (CO) to estimate the state variables, an observer-based estimator (OBE) to obtain the actual values of the unknown or changing parameters needed to tune the CO, and an asymptotic observer (AO) to estimate the states needed as input to the OBE. The proposed structure was applied to a CSTR model with three state variables. With the proposed structure, the concentration of reactants and other CSTR parameters can be estimated on-line if the reactor and jacket temperatures are known. The procedure for the design of the proposed structure is simple and guarantees observer convergence. In addition, the convergence speed of state and parameter estimation can be adjusted independently.


2021 ◽  
Vol 11 (4) ◽  
pp. 1717
Author(s):  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

The direct determination of the steady state response for linear time invariant (LTI) systems modeled by multibond graphs is presented. Firstly, a multiport junction structure of a multibond graph in an integral causality assignment (MBGI) to get the state space of the system is introduced. By assigning a derivative causality to the multiport storage elements, the multibond graph in a derivative causality (MBGD) is proposed. Based on this MBGD, a theorem to obtain the steady state response is presented. Two case studies to get the steady state of the state variables are applied. Both cases are modeled by multibond graphs, and the symbolic determination of the steady state is obtained. The simulation results using the 20-SIM software are numerically verified.


2020 ◽  
Vol 70 (2) ◽  
pp. 401-416
Author(s):  
Hana Machů

Abstract If in the right-hand sides of given differential equations occur discontinuities in the state variables, then the natural notion of a solution is the one in the sense of Filippov. In our paper, we will consider this type of solutions for vector Dirichlet problems. The obtained theorems deal with the existence and localization of Filippov solutions, under effective growth restrictions. Two illustrative examples are supplied.


2020 ◽  
Vol 45 (3) ◽  
pp. 311-318
Author(s):  
Qiang Yang ◽  
Zhuofu Tao ◽  
Yaoru Liu

AbstractIn the kinetic rate laws of internal variables, it is usually assumed that the rates of internal variables depend on the conjugate forces of the internal variables and the state variables. The dependence on the conjugate force has been fully addressed around flow potential functions. The kinetic rate laws can be formulated with two potential functions, the free energy function and the flow potential function. The dependence on the state variables has not been well addressed. Motivated by the previous study on the asymptotic stability of the internal variable theory by J. R. Rice, the thermodynamic significance of the dependence on the state variables is addressed in this paper. It is shown in this paper that the kinetic rate laws can be formulated by one extended potential function defined in an extended state space if the rates of internal variables do not depend explicitly on the internal variables. The extended state space is spanned by the state variables and the rate of internal variables. Furthermore, if the rates of internal variables do not depend explicitly on state variables, an extended Gibbs equation can be established based on the extended potential function, from which all constitutive equations can be recovered. This work may be considered as a certain Lagrangian formulation of the internal variable theory.


2021 ◽  
pp. 101269022098865
Author(s):  
Eivind Å Skille ◽  
Josef Fahlén ◽  
Cecilia Stenling ◽  
Anna-Maria Strittmatter

While colonization as policy is formally a historic phenomenon in Norway and elsewhere, many former structures of state organization – including their relationship to sport – remain under post-colonial conditions. This paper is concerned with how the Norwegian government contributes to creating a situation, which includes the Norwegian sports confederation (NIF) but excludes the indigenous people Sámi’s sports organisation. Based on existing data and literature, we analyse how the state favours NIF through a chain of legitimating acts. Thus, sport is a preserve of colonization, where a one-sided legitimation parallels a de-legitimation of the overarching sport policy goal of sport-for-all. However, there are signs of change whereby actors are challenging NIF’s monopoly and ‘older’ state-sport regimes.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 219 ◽  
Author(s):  
Alberto Sanchez ◽  
Elías Todorovich ◽  
Angel de Castro

As the performance of digital devices is improving, Hardware-In-the-Loop (HIL) techniques are being increasingly used. HIL systems are frequently implemented using FPGAs (Field Programmable Gate Array) as they allow faster calculations and therefore smaller simulation steps. As the simulation step is reduced, the incremental values for the state variables are reduced proportionally, increasing the difference between the current value of the state variable and its increments. This difference can lead to numerical resolution issues when both magnitudes cannot be stored simultaneously in the state variable. FPGA-based HIL systems generally use 32-bit floating-point due to hardware and timing restrictions but they may suffer from these resolution problems. This paper explores the limits of 32-bit floating-point arithmetics in the context of hardware-in-the-loop systems, and how a larger format can be used to avoid resolution problems. The consequences in terms of hardware resources and running frequency are also explored. Although the conclusions reached in this work can be applied to any digital device, they can be directly used in the field of FPGAs, where the designer can easily use custom floating-point arithmetics.


Author(s):  
Seong Yun Cho ◽  
Hyung Keun Lee ◽  
Hung Kyu Lee

In this paper, performance of the initial fine alignment for the stationary nonleveling strapdown inertial navigation system (SDINS) containing low-grade gyros is analyzed. First, the observability is analyzed by conducting a rank test of an observability matrix and by investigating the normalized error covariance of the extended Kalman filter based on the ten-state model. The results show that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and nonleveling attitude angles of a vehicle containing the SDINS. Especially, this paper shows that the larger the attitude angles of the vehicle are, the greater the estimation errors are. Finally, it is shown that the performance of the eight-state model excluding the two unobservable state variables is better than that of the ten-state model in the fine alignment by a Monte Carlo simulation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nigar Ahmed ◽  
Ajeet kumar Bhatia ◽  
Syed Awais Ali Shah

PurposeThe aim of this research is to design a robust active disturbance attenuation control (RADAC) technique combined with an extended high gain observer (EHGO) and low pass filter (LPF).Design/methodology/approachFor designing a RADAC technique, the sliding mode control (SMC) method is used. Since the standard method of SMC exhibits a chattering phenomenon in the controller, a multilayer sliding mode surface is designed for avoiding the chattering. In addition, to attenuate the unwanted uncertainties and disturbances (UUDs), the techniques of EHGO and LPF are deployed. Besides acting as a patch for disturbance attenuation, the EHGO design estimates the state variables. To investigate the stability and effectiveness of the designed control algorithm, the stability analysis followed by the simulation study is presented.FindingsThe major findings include the design of a chattering-free RADAC controller based on the multilayer sliding mode surface. Furthermore, a criterion of integrating the LPF scheme within the EHGO scheme is also developed to attenuate matched and mismatched UUDs.Practical implicationsIn practice, the quadrotor flight is opposed by different kinds of the UUDs. And, the model of the quadrotor is a highly nonlinear underactuated model. Thus, the dynamics of the quadrotor model become more complex and uncertain due to the additional UUDs. Hence, it is necessary to design a robust disturbance attenuation technique with the ability to estimate the state variables and attenuate the UUDs and also achieve the desired control objectives.Originality/valueDesigning control methods to attenuate the disturbances while assuming that the state variables are known is a common practice. However, investigating the uncertain plants with unknown states along with the disturbances is rarely taken in consideration for the control design. Hence, this paper presents a control algorithm to address the issues of the UUDs as well as investigate a criterion to reduce the chattering incurred in the controller due to the standard SMC algorithm.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nigar Ahmed ◽  
Syed Awais Ali Shah

PurposeIn this research paper, an adaptive output-feedback robust active disturbance rejection control (RADRC) is designed for the multiple input multiple output (MIMO) quadrotor attitude model subject to unwanted uncertainties and disturbances (UUDs).Design/methodology/approachIn order to achieve the desired control objectives in the presence of UUDs, the low pass filter (LPF) and extended high gain observer (EHGO) methods are used for the estimation of matched and mismatched UUDs, respectively. Furthermore, for solving the chattering incurred in the standard sliding mode control (SMC), a multilayer sliding mode surface is constructed. For formulating the adaptive output-feedback RADRC algorithm, the EHGO, LPF and SMC schemes are combined using the separation principle.FindingsThe findings of this research work include the design of an adaptive output-feedback RADRC with the ability to negate the UUDs as well as estimate the unknown states of the quadrotor attitude model. In addition, the chattering problem is addressed by designing a modified SMC scheme based on the multilayer sliding mode surface obtained by utilizing the estimated state variables. This sliding mode surface is also used to obtain the adaptive criteria for the switching design gain parameters involved in the SMC. Moreover, the requirement of high design gain parameters in the EHGO is solved by combining it with the LPF.Originality/valueDesigning the flight control techniques while assuming that the state variables are available is a common practice. In addition, to obtain robustness, the SMC technique is widely used. However, in practice, the state variables might not be available due to unknown parameters and uncertainties, as well as the chattering due to SMC reduces the performances of the actuators. Hence, in this paper, an adaptive output-feedback RADRC technique is designed to solve the problems of UUDs and chattering.


Sign in / Sign up

Export Citation Format

Share Document