recombination breakpoint
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Arne de Klerk ◽  
Phillip Ivan Swanepoel ◽  
Rentia Francis Lourens ◽  
Mpumelelo Zondo ◽  
Isaac Abodunran ◽  
...  

Recombination contributes to the genetic diversity found in coronaviruses and is known to be a prominent mechanism whereby they evolve. It is apparent, both from controlled experiments and in genome sequences sampled from nature, that patterns of recombination in coronaviruses are non-random and that this is likely attributable to a combination of sequence features that favour the occurrence of recombination breakpoints at specific genomic sites, and selection disfavouring the survival of recombinants within which favourable intra-genome interactions have been disrupted. Here we leverage available whole-genome sequence data for six coronavirus subgenera to identify specific patterns of recombination that are conserved between multiple subgenera and then identify the likely factors that underlie these conserved patterns. Specifically, we confirm the non-randomness of recombination breakpoints across all six tested coronavirus subgenera, locate conserved recombination hot- and cold-spots, and determine that the locations of transcriptional regulatory sequences are likely major determinants of conserved recombination breakpoint hot-spot locations. We find that while the locations of recombination breakpoints are not uniformly associated with degrees of nucleotide sequence conservation, they display significant tendencies in multiple coronavirus subgenera to occur in low guanine-cytosine content genome regions, in non-coding regions, at the edges of genes, and at sites within the Spike gene that are predicted to be minimally disruptive of Spike protein folding. While it is apparent that sequence features such as transcriptional regulatory sequences are likely major determinants of where the template-switching events that yield recombination breakpoints most commonly occur, it is evident that selection against misfolded recombinant proteins also strongly impacts observable recombination breakpoint distributions in coronavirus genomes sampled from nature.


2021 ◽  
Author(s):  
Michael A Hardigan ◽  
Mitchell J Feldmann ◽  
Dominique DA Pincot ◽  
Randi A Famula ◽  
Michaela V Vachev ◽  
...  

The challenge of allelic diversity for assembling haplotypes is exemplified in polyploid genomes containing homoeologous chromosomes of identical ancestry, and significant homologous variation within their ancestral subgenomes. Cultivated strawberry (Fragaria x ananassa) and its wild progenitors are outbred octoploids (2n = 8x = 56) in which up to eight homologous and homoeologous alleles are preserved. This introduces significant risk of haplotype collapse, switching, and chimeric fusions during assembly. Using third generation HiFi sequences from PacBio, we assembled the genome of the day-neutral octoploid F. x ananassa hybrid 'Royal Royce' from the University of California. Our goal was to produce subgenome- and haplotype-resolved assemblies of all 56 chromosomes, accurately reconstructing the parental haploid chromosome complements. Previous work has demonstrated that partitioning sequences by parental phase supports direct assembly of haplotypes in heterozygous diploid species. We leveraged the accuracy of HiFi sequence data with pedigree-informed sequencing to partition long read sequences by phase, and reduce the downstream risk of subgenomic chimeras during assembly. We were able to utilize an octoploid strawberry recombination breakpoint map containing 3.6 M variants to identify and break chimeric junctions, and perform scaffolding of the phase-1 and phase-2 octoploid assemblies. The N50 contiguity of the phase-1 and phase-2 assemblies prior to scaffolding and gap-filling was 11 Mb. The final haploid assembly represented seven of 28 chromosomes in a single contiguous sequence, and averaged fewer than three gaps per pseudomolecule. Additionally, we re-annotated the octoploid genome to produce a custom F. x ananassa repeat library and improved set of gene models based on IsoSeq transcript data and an expansive RNA-seq expression atlas. Here we present 'FaRR1', a gold-standard reference genome of F. x ananassa cultivar 'Royal Royce' to assist future genomic research and molecular breeding of allo-octoploid strawberry.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
R T Y So ◽  
J O Oladipo ◽  
D K W Chu ◽  
M Peiris

Abstract Coronaviruses (CoVs) are enveloped, single stranded, positive-sense RNA viruses with a large genomic size of 26–32 kilobases. The first human CoV identified in the 1960s was isolated from patients presenting with common cold symptoms. Subsequent epidemic outbreaks of novel zoonotic CoV transmission were reported, examples including HCoV-229E (229E), HCoV-OC43 (OC43), severe acute respiratory syndrome, and Middle East respiratory syndrome (MERS). The ongoing outbreak of MERS in the Middle East is originating from a zoonotic source of dromedary camels. Surveillance later revealed that three CoV species—HCoV-229E (229E), camel-HKU23, and MERS-CoV—were co-circulating in Saudi Arabia dromedary camels. Camel-HKU23 belongs to Group 2a CoV, which also includes human coronavirus OC43, bovine coronavirus, and porcine hemagglutinating encephalomyelitis virus. Recombination, resulting in the generation of different novel genotypes, has been reported previously among these CoVs. Our surveillance of dromedary camels slaughtered in a major abattoir in Nigeria identified camel-HKU23 from nasal swab samples with a prevalence of 2.2 per cent. Phylogenetic analysis showed Nigeria camel-HKU23 is distinct from those previously identified in Saudi Arabia, while still genetically similar, as they share a monophyletic origin. Recombination analysis of Nigeria camel-HKU23 revealed two recombination breakpoints at positions of 22774–24100 base pairs (bp) and 28224–29362 bp. Recombination breakpoint at position 22774, encoding the Group 2a CoV-specific hemagglutinin esterase gene, exhibited high bootstrap support for clustering with RbCoV HKU14, which was previously detected in domestic rabbits in China. The recombination signal is only observed in Nigeria camel-HKU23, suggesting a regional varied evolutionary history of camel-HKU23. Our findings extended the knowledge of the evolutionary relationship among Group 2a CoVs. Further surveillance in other African camels will be important to elucidate the evolution of camel-HKU23.


2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Xiaoying Zhao ◽  
Chenglin Zhou ◽  
Xiaodan Zhang ◽  
Wang Li ◽  
Xinyu Wan ◽  
...  

ABSTRACT A human parechovirus (HPeV), CH-ZXY1, was detected in feces from a child with diarrhea. Phylogenetic trees over three different genomic regions revealed discordant topological structures. Recombination analysis indicates that CH-ZXY1 is a recombinant resulting from recombination between HPeV5 and HPeV1, which was confirmed by PCR covering the recombination breakpoint.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Hui Ting Cheong ◽  
Kim Tien Ng ◽  
Lai Yee Ong ◽  
Yutaka Takebe ◽  
Kok Gan Chan ◽  
...  

Three strains of HIV-1 unique recombinant forms (URFs) descended from subtypes B, B′, and CRF01_AE were identified among people who inject drugs in Kuala Lumpur, Malaysia. These three URFs shared a common recombination breakpoint in the reverse transcriptase region, indicating frequent linkage within the drug-injecting networks in Malaysia.


2012 ◽  
Vol 93 (9) ◽  
pp. 1941-1951 ◽  
Author(s):  
Ákos Boros ◽  
Péter Pankovics ◽  
Nick J. Knowles ◽  
Gábor Reuter

Members of the genus Enterovirus (family Picornaviridae) are believed to be common and widespread among humans and different animal species, although only a few enteroviruses have been identified from animal sources. Intraspecies recombination among human enteroviruses is a well-known phenomenon, but only a few interspecies examples have been reported and, to our current knowledge, none of these have involved non-primate enteroviruses. In this study, we report the detection and complete genome characterization (using RT-PCR and long-range PCR) of a natural interspecies recombinant bovine/porcine enterovirus (ovine enterovirus type 1; OEV-1) in seven (44 %) of 16 faecal samples from 3-week-old domestic sheep (Ovis aries) collected in two consecutive years. Phylogenetic analysis of the complete coding region revealed that OEV-1 (ovine/TB4-OEV/2009/HUN; GenBank accession no. JQ277724) was a novel member of the species Porcine enterovirus B (PEV-B), implying the endemic presence of PEV-B viruses among sheep. However, the 5′ UTR of OEV-1 showed a high degree of sequence and structural identity to bovine enteroviruses. The presumed recombination breakpoint was mapped to the end of the 5′ UTR at nucleotide position 814 using sequence and SimPlot analyses. The interspecies-recombinant nature of OEV-1 suggests a closer relationship among bovine and porcine enteroviruses, enabling the exchange of at least some modular genetic elements that may evolve independently.


2012 ◽  
Vol 93 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Manuel Schibler ◽  
Daniel Gerlach ◽  
Yannick Martinez ◽  
Sandra Van Belle ◽  
Lara Turin ◽  
...  

Human rhinoviruses (HRVs) and enteroviruses (HEVs), two important human pathogens, are non-enveloped, positive-sense RNA viruses of the genus Enterovirus within the family Picornaviridae. Intraspecies recombination is known as a driving force for enterovirus and, to a lesser extent, rhinovirus evolution. Interspecies recombination is much less frequent among circulating strains, and supporting evidence for such recombination is limited to ancestral events, as shown by recent phylogenetic analyses reporting ancient HRV-A/HRV-C, HEV-A/HEV-C and HEV-A/HEV-D recombination mainly at the 5′-untranslated region (5′ UTR)–polyprotein junction. In this study, chimeric genomes were artificially generated using the 5′ UTR from two different clinical HRV-C strains (HRV-Ca and HRV-Cc), an HRV-B strain (HRV-B37) and an HEV-A strain (HEV-A71), and the remaining part of the genome from an HRV-A strain (HRV-A16). Whilst the chimeric viruses were easily propagated in cell culture, the wild-type HRV-A16 retained a replication advantage, both individually and in competition experiments. Assessment of protein synthesis ability did not show a correlation between translation and replication efficiencies. These results reflect the interchangeability of the 5′ UTR, including its functional RNA structural elements implicated in both genome translation and replication among different enterovirus species. The 5′ UTR–polyprotein junction therefore represents a theoretic interspecies recombination breakpoint. This recombination potential is probably restricted by the need for co-infection opportunities and the requirement for the progeny chimera to outcompete the parental genomes’ fitness, explaining the rare occurrence of such events in vivo.


Sign in / Sign up

Export Citation Format

Share Document