scholarly journals Insectivorous songbirds as early indicators of future defoliation by spruce budworm

2021 ◽  
Author(s):  
Marion Germain ◽  
Daniel Kneeshaw ◽  
Louis De Grandpré ◽  
Mélanie Desrochers ◽  
Patrick M. A. James ◽  
...  

Abstract Context Although the spatiotemporal dynamics of spruce budworm outbreaks have been intensively studied, forecasting outbreaks remains challenging. During outbreaks, budworm-linked warblers (Tennessee, Cape May, and bay-breasted warbler) show a strong positive response to increases in spruce budworm, but little is known about the relative timing of these responses. Objectives We hypothesized that these warblers could be used as sentinels of future defoliation of budworm host trees. We examined the timing and magnitude of the relationships between defoliation by spruce budworm and changes in the probability of presence of warblers to determine whether they responded to budworm infestation before local defoliation being observed by standard detection methods. Methods We modelled this relationship using large-scale point count surveys of songbirds and maps of cumulative time-lagged defoliation over multiple spatial scales (2–30 km radius around sampling points) in Quebec, Canada. Results All three warbler species responded positively to defoliation at each spatial scale considered, but the timing of their response differed. Maximum probability of presence of Tennessee and Cape May warbler coincided with observations of local defoliation, or provided a one year warning, making them of little use to guide early interventions. In contrast, the probability of presence of bay-breasted warbler consistently increased 3–4 years before defoliation was detectable. Conclusions Early detection is a critical step in the management of spruce budworm outbreaks and rapid increases in the probability of presence of bay-breasted warbler could be used to identify future epicenters and target ground-based local sampling of spruce budworm.

1998 ◽  
Vol 28 (11) ◽  
pp. 1733-1741 ◽  
Author(s):  
Jean-Noël Candau ◽  
Richard A Fleming ◽  
Anthony Hopkin

Survey records of spruce budworm (Choristneura fumiferana Clem.) defoliation in Ontario, taken annually since 1941, were analysed using geographic information systems (GIS), spatial statistics, and time-series methods. Cumulative frequency maps indicated that the 41 × 106 ha of Ontario that had been defoliated in at least one year since 1941 could be split into three zones of frequent defoliation separated by two approximately 100 km wide, longitudinally oriented corridors of lower frequency. Analysis of annual records of the total area defoliated showed that the fluctuations in this time series are the result of a basic oscillation of approximately 36 years, which is modified by secondary fluctuations and occasionally by sharp drops. The secondary fluctuations are at least partially due to asynchrony in otherwise remarkably similar long-wave oscillations in the eastern (25.5 × 106 ha) and western (9.6 × 106 ha) zones of frequent defoliation. Analysis of this asynchrony showed that outbreaks in the eastern zone occurred 5 or 6 years before outbreaks in the central (6.6 × 106 ha) and western zones, which were synchronous. These observations contradict previous reports of the large-scale spread of outbreaks from west to east.


2002 ◽  
Vol 2 (3) ◽  
pp. 23-28 ◽  
Author(s):  
C.-H. von Bonsdorff ◽  
L. Maunula ◽  
R.M. Niemi ◽  
R. Rimhanen-Finne ◽  
M.-L. Hänninen ◽  
...  

The purpose of this study was to monitor the levels of human enteric viruses and enteric protozoa and to relate their presence to the microbes used as hygienic quality indicators in domestic sewage from a small community in Finland during a period of one year. Genome-based sensitive detection methods for the pathogens selected (astro- and Norwalk-like viruses, Giardia and Cryptosporidium) have become available only recently and thus no earlier data was available. The effluent sewage is delivered into a river that serves as raw water for a larger town and the pathogens therefore constitute a health risk. The results showed that all the monitored pathogens could be detected, and that enteric viruses were present at considerable concentrations in sewage. High concentrations of astrovirus in raw sewage were observed during a diarrhea epidemic in the local day-care centre. The presence of viruses did not correlate with the monitored bacterial indicators of faecal contamination (coliforms, E. coli and enterococci) or with bacteriophages (somatic coliphages, F-specific RNA phages and B. fragilis phages). Giardia cysts and Cryptosporidium oocysts were detected from one sample (1/10) each.


2020 ◽  
Vol 21 ◽  
Author(s):  
Yin-xue Wang ◽  
Yi-xiang Wang ◽  
Yi-ke Li ◽  
Shi-yan Tu ◽  
Yi-qing Wang

: Ovarian cancer (OC) is one of the deadliest gynecological malignancy. Epithelial ovarian cancer (EOC) is its most common form. OC has both a poor prognosis and a high mortality rate due to the difficulties of early diagnosis, the limitation of current treatment and resistance to chemotherapy. Extracellular vesicles is a heterogeneous group of cellderived submicron vesicles which can be detected in body fluids, and it can be classified into three main types including exosomes, micro-vesicles, and apoptotic bodies. Cancer cells can produce more EVs than healthy cells. Moreover, the contents of these EVs have been found distinct from each other. It has been considered that EVs shedding from tumor cells may be implicated in clinical applications. Such as a tool for tumor diagnosis, prognosis and potential treatment of certain cancers. In this review, we provide a brief description of EVs in diagnosis, prognosis, treatment, drug-resistant of OC. Cancer-related EVs show powerful influences on tumors by various biological mechanisms. However, the contents mentioned above remain in the laboratory stage and there is a lack of large-scale clinical trials, and the maturity of the purification and detection methods is a constraint. In addition, amplification of oncogenes on ecDNA is remarkably prevalent in cancer, it may be possible that ecDNA can be encapsulated in EVs and thus detected by us. In summary, much more research on EVs needs to be perform to reveal breakthroughs in OC and to accelerate the process of its application on clinic.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 141
Author(s):  
Firoza Akhter ◽  
Maurizio Mazzoleni ◽  
Luigia Brandimarte

In this study, we explore the long-term trends of floodplain population dynamics at different spatial scales in the contiguous United States (U.S.). We exploit different types of datasets from 1790–2010—i.e., decadal spatial distribution for the population density in the US, global floodplains dataset, large-scale data of flood occurrence and damage, and structural and nonstructural flood protection measures for the US. At the national level, we found that the population initially settled down within the floodplains and then spread across its territory over time. At the state level, we observed that flood damages and national protection measures might have contributed to a learning effect, which in turn, shaped the floodplain population dynamics over time. Finally, at the county level, other socio-economic factors such as local flood insurances, economic activities, and socio-political context may predominantly influence the dynamics. Our study shows that different influencing factors affect floodplain population dynamics at different spatial scales. These facts are crucial for a reliable development and implementation of flood risk management planning.


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Di Iorio ◽  
Manon Audax ◽  
Julie Deter ◽  
Florian Holon ◽  
Julie Lossent ◽  
...  

AbstractMonitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marcelo dos Santos Barbosa ◽  
Iara Beatriz Andrade de Sousa ◽  
Simone Simionatto ◽  
Sibele Borsuk ◽  
Silvana Beutinger Marchioro

AbstractCurrent prevention methods for the transmission of Mycobacterium leprae, the causative agent of leprosy, are inadequate as suggested by the rate of new leprosy cases reported. Simple large-scale detection methods for M. leprae infection are crucial for early detection of leprosy and disease control. The present study investigates the production and seroreactivity of a recombinant polypeptide composed of various M. leprae protein epitopes. The structural and physicochemical parameters of this construction were assessed using in silico tools. Parameters like subcellular localization, presence of signal peptide, primary, secondary, and tertiary structures, and 3D model were ascertained using several bioinformatics tools. The resultant purified recombinant polypeptide, designated rMLP15, is composed of 15 peptides from six selected M. leprae proteins (ML1358, ML2055, ML0885, ML1811, ML1812, and ML1214) that induce T cell reactivity in leprosy patients from different hyperendemic regions. Using rMLP15 as the antigen, sera from 24 positive patients and 14 healthy controls were evaluated for reactivity via ELISA. ELISA-rMLP15 was able to diagnose 79.17% of leprosy patients with a specificity of 92.86%. rMLP15 was also able to detect the multibacillary and paucibacillary patients in the same proportions, a desirable addition in the leprosy diagnosis. These results summarily indicate the utility of the recombinant protein rMLP15 in the diagnosis of leprosy and the future development of a viable screening test.


Author(s):  
Marc Rhainds ◽  
Ian DeMerchant ◽  
Pierre Therrien

Abstract Spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is the most severe defoliator of Pinaceae in Nearctic boreal forests. Three tools widely used to guide large-scale management decisions (year-to-year defoliation maps; density of overwintering second instars [L2]; number of males at pheromone traps) were integrated to derive pheromone-based thresholds corresponding to specific intergenerational transitions in larval densities (L2i → L2i+1), taking into account the novel finding that threshold estimates decline with distance to defoliated forest stands (DIST). Estimates of thresholds were highly variable between years, both numerically and in terms of interactive effects of L2i and DIST, which limit their heuristic value. In the context of early intervention strategy (L2i+1 > 6.5 individuals per branch), however, thresholds fluctuated within relatively narrow intervals across wide ranges of L2i and DIST, and values of 40–200 males per trap may thus be used as general guideline.


Sign in / Sign up

Export Citation Format

Share Document