scholarly journals Thermal Properties of Calcium Sulphoaluminate Cement as an Alternative to Ordinary Portland Cement

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7011
Author(s):  
Małgorzata Gołaszewska ◽  
Barbara Klemczak ◽  
Jacek Gołaszewski

This paper presents the results of research into the heat of hydration and activation energy of calcium sulphoaluminate (CSA) cement in terms of the dependence on curing temperature and water/cement ratio. Cement pastes with water/cement ratios in the range of 0.3–0.6 were tested by isothermal calorimetry at 20 °C, 35 °C and 50 °C, with the evolved hydration heat and its rate monitored for 168 h from mixing water with cement. Reference pastes with ordinary Portland cement (OPC) were also tested in the same range. The apparent activation energy of CSA and OPC was determined based on the results of the measurements. CSA pastes exhibited complex thermal behaviour that differed significantly from the thermal behaviour of ordinary Portland cement. The results show that both the w/c ratio and elevated temperature have a meaningful effect on the heat emission and the hydration process of CSA cement pastes. The determined apparent activation energy of CSA revealed its substantial variability and dependence, both on the w/c ratio and the curing temperature.

2008 ◽  
Vol 569 ◽  
pp. 261-264 ◽  
Author(s):  
Xiao Yong Wang ◽  
Han Seung Lee ◽  
Seung Min Lim

Fly ash and granulated blast-furnace slag, which are used as blends of Portland cement, are waste materials produced in electric and energy industry. Due to excellent durability, low heat of hydration, energy-saving, resource-conserving, and generally less expensive than ordinary Portland cement, blends Portland cements is used increasingly in construction industry. Both ecology benefit and economic benefit can be achieved by using blended Portland cement. Addition of blended components to cement, especially such as fly ash or silica fume, will lead to a densification of the microstructure. The autogenous shrinkage deformation will increase and the following autogenous shrinkage crack will do harm to durability of concrete structure. In this paper, based on the multi-component hydration model, a numerical program is built to predict autogenous shrinkage of ordinary Portland cement and blended Portland cement. The numerical program considers the influence of water to cement ratio, curing temperature, particle size distribution, cement mineral components on hydration process and autogenous shrinkage. The prediction result agrees well with experiment result.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xingdong Lv ◽  
Jiazheng Li ◽  
Chao Lu ◽  
Zhanao Liu ◽  
Yaosheng Tan ◽  
...  

The goal of this paper provides better understanding of the effect of sodium gluconate (SG) on ordinary Portland cement (OPC) hydration behavior. Pastes’ performances of ordinary Portland cement, including setting time at 20°C and 35°C curing temperature, mechanical strength, fluidity, and zeta potential are studied. Furthermore, the effects of SG on cement hydration behaviors are investigated by the means of isothermal calorimetry measurements, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results show that SG is difficult to maintain significant retarding effect at the temperature of 35°C compared to that at the temperature of 20°C. SG is able to reduce the cement cumulative hydration heat and delay the occurrence time of heat evolution peak in a certain extent, but it has little impact on reducing the cement evolution rate peak. The effects of SG on mechanical properties and dispersion properties of cement depend on its dosages. Specifically, the positive effect occurs when the addition dosage is less than 0.15% (i.e., by cement weight), but the negative effect emerges if the addition dosages exceed this limitation. Similarly, SG plays different roles on cement hydration at different hydration periods. It inhibits the hydration of C3S and the formation of portlandite (CH) at the early hydration period. On the contrary, it promotes the C3S hydration when hydration time is beyond 1 d. Meanwhile, SG also plays different roles on cement hydration at different dosage additions. Specifically, SG promotes ettringite (AFt) formation at the dosage less than 0.06%, but it inhibits AFt formation at the dosage more than 0.06%.


2005 ◽  
Vol 23 (3) ◽  
pp. 245-254 ◽  
Author(s):  
S.A. Abo-El-Enein ◽  
S. Hanafi ◽  
F.I. El-Hosiny ◽  
El-Said H.M. El-Mosallamy ◽  
M.S. Amin

Ordinary Portland cement (OPC) pastes with added superplasticizer were made using water/cement weight ratios of standard consistency. Three types of superplasticizer based on acrylate—poly(ethylene glycol) copolymers were used. The pastes were hydrated for various time lengths and the mechanical characteristics of the hardened cement pastes were studied and related to their pore structures. It was found that the addition of the superplasticizers to OPC improved the mechanical properties of the hardened pastes for all hydration lengths. The addition of such superplasticizers to OPC resulted in a decrease in the specific surface areas and total pore volumes of the hardened superplasticized cement pastes relative to the corresponding hardened neat cement pastes.


2021 ◽  
Vol 03 (04) ◽  
pp. 1-1
Author(s):  
Pal S. Mangat ◽  
◽  
Shahriar Abubakri ◽  
Konstantinos Grigoriadis ◽  
Vincenzo Starinieri ◽  
...  

Microwave curing of repair patches provides an energy efficient technique for rapid concrete repair. It has serious economic potential due to time and energy saving especially for repairs in cold weather which can cause work stoppages. However, the high temperatures resulting from the combination of microwave exposure and accelerated hydration of cementitious repair materials need to be investigated to prevent potential durability problems in concrete patch repairs. This paper investigates the time and magnitude of the peak hydration temperature during microwave curing (MC) of six cement based concrete repair materials and a CEM II mortar. Repair material specimens were microwave cured to a surface temperature of 40-45 °C while their internal and surface temperatures were monitored. Their internal temperature was further monitored up to 24 hours in order to determine the effect of microwave curing on the heat of hydration. The results show that a short period of early age microwave curing increases the hydration temperature and brings forward the peak heat of hydration time relative to the control specimens which are continuously exposed to ambient conditions (20 °C, 60% RH). The peak heat of hydration of normal density, rapid hardening Portland cement based repair materials with either pfa or polymer addition almost merges with the end of microwave curing period. Similarly, lightweight polymer modified repair materials also develop heat of hydration rapidly which almost merges with the end of microwave curing period. The peak heat of hydration of normal density ordinary Portland cement based repair materials, with and without polymer addition, occurs during the post microwave curing period. The sum of the microwave curing and heat of hydration temperatures can easily exceed the limit of about 70 °C in some materials at very early age, which can cause durability problems.


2014 ◽  
Vol 97 (5) ◽  
pp. 1534-1542 ◽  
Author(s):  
Amal R. Jayapalan ◽  
Melinda L. Jue ◽  
Kimberly E. Kurtis

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


Author(s):  
Eunyong Lee ◽  
Haeryong Jung ◽  
Ki-jung Kwon ◽  
Do-Gyeum Kim

Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c raito and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4999
Author(s):  
Lanh Si Ho ◽  
Kenichiro Nakarai ◽  
Kenta Eguchi ◽  
Yuko Ogawa

To improve the strength of cement-treated sand effectively, the use of various cement types was investigated at different curing temperatures and compared with the results obtained from similar mortars at higher cement contents. The compressive strengths of cement-treated sand specimens that contained high early-strength Portland cement (HPC) cured at elevated and normal temperatures were found to be higher than those of specimens that contained ordinary Portland cement (OPC) and moderate heat Portland cement at both early and later ages. At 3 days, the compressive strength of the HPC-treated sand specimen, normalized with respect to that of the OPC under normal conditions, is nearly twice the corresponding value for the HPC mortar specimens with water-to-cement ratio of 50%. At 28 days, the normalized value for HPC-treated sand is approximately 1.5 times higher than that of mortar, with a value of 50%. This indicates that the use of HPC contributed more to the strength development of the cement-treated sand than to that of the mortar, and the effects of HPC at an early age were higher than those at a later age. These trends were explained by the larger quantity of chemically bound water observed in the specimens that contained HPC, as a result of their greater alite contents and porosities, in cement-treated sand. The findings of this study can be used to ensure the desired strength development of cement-treated soils by considering both the curing temperature and cement type. Furthermore, they suggested a novel method for producing a high internal temperature for promoting the strength development of cement-treated soils.


2015 ◽  
Vol 820 ◽  
pp. 492-496
Author(s):  
D.C.S. Garcia ◽  
Roberto Braga Figueiredo ◽  
Maria Teresa Paulino Aguilar

The aim of this paper was to investigate the influence of heat treatment on hardness evolution of cement pastes containing silica fume. The specimens were prepared with Ordinary Portland Cement, water/binder ratio of 0,40 and 25% wt. silica fume. The specimens were cast at room temperatures and after 24 hours, they were placed in a furnace for 24 hours, with heat regimes of 100°C, 200°C and 300°C and then submitted to the ultra-microhardness test. The microstructure was analyzed using optical microscopy. The results showed that the silica fume prevents the production of calcium hydroxide and the heat treatment increases the material hardness.


Sign in / Sign up

Export Citation Format

Share Document