lipophilic molecule
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jeongkwan Hong ◽  
Jae-Geun Lee ◽  
Kyung-Cheol Sohn ◽  
Kayoung Lee ◽  
Seoee Lee ◽  
...  

AbstractThough various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.


2020 ◽  
Author(s):  
Philippe Halfon ◽  
Eloïne Bestion ◽  
Keivan Zandi ◽  
Julien Andreani ◽  
Jean-Pierre Baudoin ◽  
...  

AbstractSince December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/2019-nCoV) has spread quickly worldwide, with more than 29 million cases and 920,000 deaths. Interestingly, coronaviruses were found to subvert and hijack the autophagic process to allow their viral replication. One of the spotlights had been focused on the autophagy inhibitors as a target mechanism effective in the inhibition of SARS-CoV-2 infection. Consequently, chloroquine (CQ) and hydroxychloroquine (HCQ), a derivative of CQ, was suggested as the first potentially be therapeutic strategies as they are known to be autophagy inhibitors. Then, they were used as therapeutics in SARS-CoV-2 infection along with remdesivir, for which the FDA approved emergency use authorization. Here, we investigated the antiviral activity and associated mechanism of GNS561, a small basic lipophilic molecule inhibitor of late-stage autophagy, against SARS-CoV-2. Our data indicated that GNS561 showed the highest antiviral effect for two SARS-CoV-2 strains compared to CQ and remdesivir. Focusing on the autophagy mechanism, we showed that GNS561, located in LAMP2-positive lysosomes, together with SARS-CoV-2, blocked autophagy by increasing the size of LC3-II spots and the accumulation of autophagic vacuoles in the cytoplasm with the presence of multilamellar bodies characteristic of a complexed autophagy. Finally, our study revealed that the combination of GNS561 and remdesivir was associated with a strong synergistic antiviral effect against SARS-CoV-2. Overall, our study highlights GNS561 as a powerful drug in SARS-CoV-2 infection and supports that the hypothesis that autophagy inhibitors could be an alternative strategy for SARS-CoV-2 infection.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 489 ◽  
Author(s):  
Feczkó ◽  
Piiper ◽  
Pleli ◽  
Schmithals ◽  
Denk ◽  
...  

: Today, efficient delivery of sorafenib to hepatocellular carcinoma remains a challenge for current drug formulation strategies. Incorporating the lipophilic molecule into biocompatible and biodegradable theranostic nanocarriers has great potential for improving the efficacy and safety of cancer therapy. In the present study, three different technologies for the encapsulation of sorafenib into poly(d,l-lactide-co-glycolide) and polyethylene glycol-poly(d,l-lactide-co-glycolide) copolymers were compared. The particles ranged in size between 220 and 240 nm, with encapsulation efficiencies from 76.1 ± 1.7% to 69.1 ± 10.1%. A remarkable maximum drug load of approximately 9.0% was achieved. Finally, a gadolinium complex was covalently attached to the nanoparticle surface, transforming the nanospheres into theranostic devices, allowing their localization using magnetic resonance imaging. The manufacture of sorafenib-loaded nanoparticles alongside the functionalization of the particle surface with gadolinium complexes resulted in a highly efficacious nanodelivery system which exhibited a strong magnetic resonance imaging signal, optimal stability features, and a sustained release profile.


2019 ◽  
Author(s):  
Tivadar Feczkó ◽  
Albrecht Piiper ◽  
Thomas Pleli ◽  
Christian Schmithals ◽  
Dominic Denk ◽  
...  

Background: Efficient delivery of the poorly water-soluble compound sorafenib still poses a challenge to current formulation strategies. To incorporate the lipophilic molecule into biocompatible and biodegradable theranostic nanoparticles has great potential for improving efficacy and safety of cancer therapy. Results: In this study, sorafenib nanoencapsulation was optimized using poly(D,L-lactide-co-glycolide) and polyethylene glycol-poly(D,L-lactide-co-glycolide) copolymers comparing three different technologies. The particles ranged in size between 220 and 240 nm with encapsulation efficiencies from 76.1 ± 1.7 % to 69.1 ± 10.1 %. A remarkable maximum drug load of 9.0 % was achieved. Finally, a gadolinium complex was covalently attached to the nanoparticle surface transforming the nanospheres into theranostic devices allowing the localization using magnetic resonance imaging. Conclusion: The manufacture of sorafenib-loaded nanoparticles and the functionalization of the particle surface with a gadolinium complex resulted in a high drug loading, a strong MRI signal, optimal stability features and a sustained release profile.


2015 ◽  
Vol 65 (3) ◽  
pp. 285-297 ◽  
Author(s):  
Ahmed N. Allam ◽  
Ibrahim A. Komeil ◽  
Ossama Y. Abdallah

Abstract Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.


2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Negar Ghalandarlaki ◽  
Ali Mohammad Alizadeh ◽  
Soheil Ashkani-Esfahani

Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin’s therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases.


2012 ◽  
Vol 15 (1) ◽  
pp. 197 ◽  
Author(s):  
Cristina Canal ◽  
Rosa Maria Aparicio ◽  
Alejandro Vilchez ◽  
Jordi Esquena ◽  
Maria José García-Celma

Purpose. Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. Methods. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Results. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Conclusions. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2010 ◽  
Vol 27 (4) ◽  
pp. 699-711 ◽  
Author(s):  
Chhavi Gupta ◽  
Anuj Chauhan ◽  
Raj Mutharasan ◽  
Sangly P. Srinivas

Sign in / Sign up

Export Citation Format

Share Document