3D fluid-solid full coupling numerical simulation of soil deformation induced by shield tunnelling

2019 ◽  
Vol 90 ◽  
pp. 174-182 ◽  
Author(s):  
Zhao Li ◽  
Zujiang Luo ◽  
Chenghua Xu ◽  
Jinzhong Tan
2021 ◽  
Vol 11 (6) ◽  
pp. 2551
Author(s):  
Hyobum Lee ◽  
Hangseok Choi ◽  
Soon-Wook Choi ◽  
Soo-Ho Chang ◽  
Tae-Ho Kang ◽  
...  

This study demonstrates a three-dimensional numerical simulation of earth pressure balance (EPB) shield tunnelling using a coupled discrete element method (DEM) and a finite difference method (FDM). The analysis adopted the actual size of a spoke-type EPB shield tunnel boring machine (TBM) consisting of a cutter head with cutting tools, working chamber, screw conveyor, and shield. For the coupled model to reproduce the in situ ground condition, the ground formation was generated partially using the DEM (for the limited domain influenced by excavation), with the rest of the domain being composed of FDM grids. In the DEM domain, contact parameters of particles were calibrated via a series of large-scale triaxial test analyses. The model simulated tunnelling as the TBM operational conditions were controlled. The penetration rate and the rotational speed of the screw conveyor were automatically adjusted as the TBM advanced to prevent the generation of excessive or insufficient torque, thrust force, or chamber pressure. Accordingly, these parameters were maintained consistently around their set operational ranges during excavation. The simulation results show that the proposed numerical model based on DEM–FDM coupling could reasonably simulate EPB driving while considering the TBM operational conditions.


2013 ◽  
Vol 734-737 ◽  
pp. 502-506
Author(s):  
Meng Lin Xu ◽  
De Shen Zhao

The shield tunneling will be bound to disturb surrounding strata, induced stress redistribution in soil, soil deformation and surface subsidence. We analyzed characteristics of soil disturbance by shield tunneling with numerical simulation. To provide technical support for the future urban shield tunnel construction. It shows practically significant in studying shield tunnel construction.


2010 ◽  
Vol 168-170 ◽  
pp. 357-364
Author(s):  
Ji Feng Liu ◽  
Bo Liu ◽  
Hui Zhi Zhang

to evaluate the influence of soil-water coupled and shield tunnel construction induced around soil disturbance damage on ground surface settlement, the process of shield tunnel construction induced around soil disturbance is analyzed, the FLAC3D numerical simulation are carried out, and a newly-modified tunnelling-induced ground settlement calculation method based on disturbance degree of around soil and soil-water coupled is presented, and these methods are applied in case of Beijing Metro 10thLine. It is indicated that considering the influence of the shield tunnelling-induced around soil disturbance damage, and soil-water coupled induced soil properties weakening and the excess pore water pressure dissipating induced soil consolidation to the ground surface settlement are necessary, the calculating result of the newly-modified surface settlement prediction method, and the result FLAC3D numerical simulation all agree well with in-site observed data of Beijing Metro 10th Line.


2010 ◽  
Vol 168-170 ◽  
pp. 270-275
Author(s):  
Rong Jun Zhang ◽  
Jun Jie Zheng ◽  
You Kou Dong

Existing numerical simulation methods tend to neglect some details of shield tunnelling and the cyclic shear characteristics of pile-soil interface. In this paper, an elaborate simulation method is firstly proposed to simulate the advancing of shield machines according to the details of shield tunnelling. Then an improved constitutive model for pile-soil interface, which can factually consider the cyclic shear characteristics, is also developed. Finally, through a case study, it can be found that the proposed simulation method can provide reliable estimation for this problem, and it is important to factually consider the cyclic shear characteristics of pile-soil interface.


2013 ◽  
Vol 353-356 ◽  
pp. 159-162
Author(s):  
Li Liu ◽  
Hong Ru Zhang ◽  
Rui Yu Zhang

The excavation of deep foundation pit by numerical simulation is researched in this paper. Different locations of soil are selected to be as test points. Under two velocities, the law of total displacements that reflect the test points in the same locations is discussed. The variation tendency of the pore pressure under the rapid construction and tendency of the volume change under the normal construction are compared. The soil is divided to three parts in numerical simulation: the side, the bottom I and the bottom II of the foundation. The numerical results are as follows: the total displacement of the rapid construction is double for ones of the normal construction, which is on the side and the bottom I of deep foundation pit. Under the different drainage conditions, the soil on the side of deep excavation experiences the dilatancy, and then the shear-contraction, and then the dilatancy; the soil on the bottom II of deep excavation experiences the dilatancy and then the shear-contraction. The soil on the bottom I experiences the dilatancy under the normal construction; but it experiences the dilatancy and then the shear-contraction under the rapid construction.


2011 ◽  
Vol 261-263 ◽  
pp. 1814-1819
Author(s):  
Gang Wei ◽  
Jie Hong ◽  
Xin Jiang Wei

Three-dimensional (3D) analytical solution of soil deformation induced by ground loss in shield tunnelling construction was researched. It is put forward that the ground loss ratio is not a fixed value, but changes in driving direction. The calculation formula of ground loss ratio in driving direction was deduced. Based on two-dimensional (2D) analytical solution of uniform ground movement model of shield tunnelling, the three-dimensional analytical solution of ground deformation induced by ground loss is deduced. The settlement in vertical direction and the displacement in lateral horizontal direction at any point can be calculated; and the method is only applied to the construction phase. In analytical calculation: the predicted soil displacements are in good agreement with the measured values, and the method is easy to use; the closer the soil to tunnel is, the faster the lateral horizontal displacement changes; the extent of change of lateral horizontal displacement in longitudinal direction is smaller than displacement in lateral direction.


Sign in / Sign up

Export Citation Format

Share Document