brain lipid peroxidation
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 4)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 18 (3) ◽  
pp. 517-522
Author(s):  
Prosper Ejiro Awhin ◽  
Ugochukwu Enyinnaya Uzuegbu ◽  
Evelyn Ojugbeli ◽  
Lily Oghenevovwero Otomewo

This research sought to verify the effect of natural honey on brain levels of malondialdehyde (MDA) and reduced glutathione (GSH) in rats. Forty nine male and female Wistar rats were used for the experiment. The rats were allotted into seven groups of seven rats in each group. For one month, rats in groups 1-4 were fed with 100% feed, 20%, 30% and 40% honey respectively. The remaining 3 groups were fed with amounts of refined fructose and glucose equivalent to those in 20%, 30% and 40% honey. The brains were then excised, homogenized and used for biochemical analysis. Results showed that honey in all concentrations caused a significant increase in GSH levels but only 20% honey caused a significant decrease in MDA level when compared with control. Also, fructose feeding at 20%, 30% and 40% increased both brain GSH and MDA levels. Consequently, the influence of GSH as an antioxidant against brain lipid peroxidation needs further studies for better understanding since an increase in GSH for fructose- and honey-fed rats did not cause a simultaneous decrease in MDA content.


2021 ◽  
Author(s):  
Kunal Khurana ◽  
Manish Kumar ◽  
Nitin Bansal

Abstract Nicotine-withdrawal after daily exposure manifests somatic and affective symptom including a range of cognitive deficits. Earlier studies suggested participation of L-type calcium channels (LTCCs) in development of nicotine dependence and expression of withdrawal signs. An upsurge in Ca2+-induced oxidative stress in brain underlies the biochemical events and behavioral signs of nicotine-withdrawal. The present study is aimed to explore the effects of lacidipine (LTCC antagonist) against nicotine-withdrawal. Swiss albino mice were administered (−)-nicotine hydrogen tartrate (3.35 mg/kg, t.i.d.) from day 1 to 7 and alongside lacidipine (0.3, 1 and 3 mg/kg, i.p.) given from day 1 to 14. Somatic withdrawal signs were noted 48 h after last dose of nicotine. Bay-K8644 (LTCC agonist) was administered in mice subjected to nicotine-withdrawal and lacidipine (3 mg/kg) treatments. Behavioral tests of memory, anxiety, and depression were conducted on day 13 and 14 to assess the effects of lacidipine on affective symptoms of nicotine-withdrawal. Biomarkers of oxido-nitrosative were quantified in the whole brain. Nicotine-withdrawal significantly enhanced somatic signs and symptoms of anxiety, depression, and memory impairment in mice. Lacidipine (1 and 3 mg/kg) attenuated nicotine-withdrawal induced somatic symptoms and also ameliorated behavioral abnormalities. Nicotine-withdrawal triggered an upsurge in brain lipid peroxidation, total nitrite content, and decline in antioxidants and these effects were attenuated by lacidipine. Bay-K8644 significantly abolished improvement in somatic and affective symptoms, and antioxidant effects by lacidipine in mice subjected to nicotine-withdrawal. Lacidipine mitigated nicotine-withdrawal triggered somatic and affective symptoms owing to decrease in brain oxido-nitrosative stress.


2020 ◽  
Vol 29 (6) ◽  
pp. 1271-1276
Author(s):  
Ezinwa Hope Chinwe ◽  
Raymond C. Okum ◽  
Ifeanyi Christian Ezeoyili ◽  
Ifeanyi O. Aguzie ◽  
Christopher D. Nwani

2018 ◽  
Vol 47 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Marianne U. Huun ◽  
Håvard T. Garberg ◽  
Giuseppe Buonocore ◽  
Mariangela Longini ◽  
Elisa Belvisi ◽  
...  

Abstract Background Oxidative stress plays an important part in the pathophysiology of hypoxic-ischemic encephalopathy (HIE) and is reliably measured through prostanoids following lipid peroxidation of polyunsaturated fatty acids (PUFAs). The aim of the study is to measure oxidative stress in the prefrontal cortex, white matter and hippocampus in the brains of hypoxic-ischemic piglets treated with docosahexaenoic acid (DHA) and therapeutic hypothermia (TH) and investigate the additive effects of DHA on hypothermia by factorial design. Methods Fifty-five piglets were randomized as having severe global hypoxia (n=48) or not (sham, n=7). Hypoxic piglets were further randomized: vehicle (VEH), DHA, VEH+hypothermia (HT) or HT+DHA. A total of 5 mg/kg DHA was given intravenously 210 min after the end of hypoxia. Brain tissues were analyzed using liquid chromatography triple quadrupole mass spectrometry technique (LC-MS). A two-way analysis of variance (ANOVA) was performed with DHA and HT as main effects. Results In the white matter, we found main effects of DHA on DH-isoprostanes (P=0.030) and a main effect of HT on F4-neuroprostanes (F4-NeuroPs) (P=0.007), F2-isoprostanes (F2-IsoPs) (P=0.043) and DH-isoprostanes (P=0.023). In the cortex, the ANOVA analysis showed the interactions of main effects between DHA and HT for neurofuranes (NeuroFs) (P=0.092) and DH-isoprostanes (P=0.015) as DHA significantly reduced lipid peroxidation in the absence of HT. DHA compared to VEH significantly reduced NeuroFs (P=0.019) and DH-isoprostanes (P=0.010). No differences were found in the hippocampus. Conclusion After severe hypoxia, HT reduced lipid peroxidation in the white matter but not in the cortical gray matter. HT attenuated the reducing effect of DHA on lipid peroxidation in the cortex. Further studies are needed to determine whether DHA can be an effective add-on therapy for TH.


2018 ◽  
Vol 11 (3) ◽  
pp. 1187-1197 ◽  
Author(s):  
Omar M.E. Abdel-Salam ◽  
Amany A. Sleem ◽  
Marawan Abd El Baset Mohamed Sayed ◽  
Yasser A. Khadrawy ◽  
Fatma A. Morsy

The effect of Cannabis sativa extract on chemical kindling induced in rats by the repeated intraperitoneal (ip) injections of pentylenetetrazole (PTZ) was studied. Rats were treated with PTZ (35 mg/kg) once every 48 hours for 12 times alone or with ip Cannabis sativa (20 mg/kg expressed as Δ9-THC content) 30 min prior to PTZ injection. Seizures were recorded for 20 minutes. Control rats received ip saline. Cannabis treatment caused significant elevation of mean seizure score as compared to PTZ only group after the 5th, 6th and 7th PTZ repeated injections during seizure development. In particular, cannabis caused significant elevation in the frequency of myoclonic jerks, rearing (stage 3), turn over onto one side position and back position (stage 4), and generalized tonic-clonic seizures (stage 5) compared with the PTZ only group. PTZ caused significant elevations in brain lipid peroxidation (malondialdehyde), and nitric oxide along with deceased reduced glutathione level. In addition, brain acetylcholinesterase (AChE) activity significantly decreased compared to control value after PTZ treatment. Cannabis given to PTZ treated rats caused significant increase in brain malondialdehyde and AChE activity compared to PTZ only group. Reduced glutathione level was restored by cannabis. Histopathological studies indicated the presence of spongiform changes, degenerated and necrotic neurons, inflammatory cells, and gliosis in cerebral cortex and degeneration of some Purkinje cells in the cerebellum in both PTZ- and cannabis-PTZ-treated groups. It is concluded that in an epilepsy model induced by repeated PTZ administration, cannabis increased lipid peroxidation and mean seizure score.


Drug Research ◽  
2017 ◽  
Vol 68 (05) ◽  
pp. 263-269 ◽  
Author(s):  
Yanier Nuñez-Figueredo ◽  
Jeney Ramirez-Sanchez ◽  
Yeniceis Issac ◽  
Estael Ochoa-Rodriguez ◽  
Yamila Verdecia-Reyes ◽  
...  

AbstractFree radicals are important mediators in a number of neurodegenerative diseases and molecules capable of scavenging reactive oxygen species (ROS) may be a feasible strategy for protecting neuronal cells. In this sense, polyphenols have been studied for their antioxidant effects, KM-34 (5-(3, 4-dydroxyl-benzylidene)-2, 2-dimethyl-1, 3-dioxane-4, 6-Dione) is a novel synthetic catechol with potential neuroprotective and antioxidant properties. We have assessed the antioxidant (as scavenging and iron-chelating compound) and neuroprotectant in vitro (in PC12 cell injury induced by H2O2, glutamate or FeSO4/AA) of KM-34. KM-34 was found to be a potent antioxidant, as shown by (i) inhibition of iron induced-brain lipid peroxidation, (ii) inhibition of 2-deoxyribose degradation, (iii) inhibition of superoxide radicals generation (IC50=11.04 μM) and (iv) inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical reduction (IC50=16.26 μM). The overall anti-oxidant action of KM-34 appears to be a combination of a direct reaction with free radicals and chelating the metal ions responsible for the production of ROS. Our work suggests that the antioxidant properties of KM-34 may provide future therapeutic approaches for neurodegenerative disorders.


2016 ◽  
Vol 33 (04) ◽  
pp. 83-88 ◽  
Author(s):  
Rasa Bernotiene ◽  
Laima Ivanoviene ◽  
Ilona Sadauskiene ◽  
Arunas Liekis ◽  
Leonid Ivanov

Sign in / Sign up

Export Citation Format

Share Document