scholarly journals Regional differences of hypothermia on oxidative stress following hypoxia-ischemia: a study of DHA and hypothermia on brain lipid peroxidation in newborn piglets

2018 ◽  
Vol 47 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Marianne U. Huun ◽  
Håvard T. Garberg ◽  
Giuseppe Buonocore ◽  
Mariangela Longini ◽  
Elisa Belvisi ◽  
...  

Abstract Background Oxidative stress plays an important part in the pathophysiology of hypoxic-ischemic encephalopathy (HIE) and is reliably measured through prostanoids following lipid peroxidation of polyunsaturated fatty acids (PUFAs). The aim of the study is to measure oxidative stress in the prefrontal cortex, white matter and hippocampus in the brains of hypoxic-ischemic piglets treated with docosahexaenoic acid (DHA) and therapeutic hypothermia (TH) and investigate the additive effects of DHA on hypothermia by factorial design. Methods Fifty-five piglets were randomized as having severe global hypoxia (n=48) or not (sham, n=7). Hypoxic piglets were further randomized: vehicle (VEH), DHA, VEH+hypothermia (HT) or HT+DHA. A total of 5 mg/kg DHA was given intravenously 210 min after the end of hypoxia. Brain tissues were analyzed using liquid chromatography triple quadrupole mass spectrometry technique (LC-MS). A two-way analysis of variance (ANOVA) was performed with DHA and HT as main effects. Results In the white matter, we found main effects of DHA on DH-isoprostanes (P=0.030) and a main effect of HT on F4-neuroprostanes (F4-NeuroPs) (P=0.007), F2-isoprostanes (F2-IsoPs) (P=0.043) and DH-isoprostanes (P=0.023). In the cortex, the ANOVA analysis showed the interactions of main effects between DHA and HT for neurofuranes (NeuroFs) (P=0.092) and DH-isoprostanes (P=0.015) as DHA significantly reduced lipid peroxidation in the absence of HT. DHA compared to VEH significantly reduced NeuroFs (P=0.019) and DH-isoprostanes (P=0.010). No differences were found in the hippocampus. Conclusion After severe hypoxia, HT reduced lipid peroxidation in the white matter but not in the cortical gray matter. HT attenuated the reducing effect of DHA on lipid peroxidation in the cortex. Further studies are needed to determine whether DHA can be an effective add-on therapy for TH.

Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

 Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was ad­ministered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status mark­ers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Al­though the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.Keywords: ram, buparvaquone, safety.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christina D’Agrosa ◽  
Charles L. Cai ◽  
Faisal Siddiqui ◽  
Karen Deslouches ◽  
Stephen Wadowski ◽  
...  

Abstract Background Neonatal intermittent hypoxia (IH) results in oxidative distress in preterm infants with immature antioxidant systems, contributing to lung injury. Coenzyme Q10 (CoQ10) and fish oil protect against oxidative injury. We tested the hypothesis that CoQ10 is more effective than fish oil for prevention of IH-induced lung injury in neonatal rats. Methods Newborn rats were exposed to two clinically relevant IH paradigms at birth (P0): (1) 50% O2 with brief hypoxia (12% O2); or (2) room air (RA) with brief hypoxia (12% O2), until P14 during which they were supplemented with daily oral CoQ10, fish oil, or olive oil from P0 to P14. Pups were studied at P14 or placed in RA until P21 with no further treatment. Lungs were assessed for histopathology and morphometry; biomarkers of oxidative stress and lipid peroxidation; and antioxidants. Results Of the two neonatal IH paradigms 21%/12% O2 IH resulted in the most severe outcomes, evidenced by histopathology and morphometry. CoQ10 was effective for preserving lung architecture and reduction of IH-induced oxidative stress biomarkers. In contrast, fish oil resulted in significant adverse outcomes including oversimplified alveoli, hemorrhage, reduced secondary crest formation and thickened septae. This was associated with elevated oxidants and antioxidants activities. Conclusions Data suggest that higher FiO2 may be needed between IH episodes to curtail the damaging effects of IH, and to provide the lungs with necessary respite. The negative outcomes with fish oil supplementation suggest oxidative stress-induced lipid peroxidation.


Author(s):  
Anna L Tyler ◽  
Baha El Kassaby ◽  
Georgi Kolishovski ◽  
Jake Emerson ◽  
Ann E Wells ◽  
...  

Abstract It is well understood that variation in relatedness among individuals, or kinship, can lead to false genetic associations. Multiple methods have been developed to adjust for kinship while maintaining power to detect true associations. However, relatively unstudied, are the effects of kinship on genetic interaction test statistics. Here we performed a survey of kinship effects on studies of six commonly used mouse populations. We measured inflation of main effect test statistics, genetic interaction test statistics, and interaction test statistics reparametrized by the Combined Analysis of Pleiotropy and Epistasis (CAPE). We also performed linear mixed model (LMM) kinship corrections using two types of kinship matrix: an overall kinship matrix calculated from the full set of genotyped markers, and a reduced kinship matrix, which left out markers on the chromosome(s) being tested. We found that test statistic inflation varied across populations and was driven largely by linkage disequilibrium. In contrast, there was no observable inflation in the genetic interaction test statistics. CAPE statistics were inflated at a level in between that of the main effects and the interaction effects. The overall kinship matrix overcorrected the inflation of main effect statistics relative to the reduced kinship matrix. The two types of kinship matrices had similar effects on the interaction statistics and CAPE statistics, although the overall kinship matrix trended toward a more severe correction. In conclusion, we recommend using a LMM kinship correction for both main effects and genetic interactions and further recommend that the kinship matrix be calculated from a reduced set of markers in which the chromosomes being tested are omitted from the calculation. This is particularly important in populations with substantial population structure, such as recombinant inbred lines in which genomic replicates are used.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bradley S. Peterson ◽  
Amy E. West ◽  
John R. Weisz ◽  
Wendy J. Mack ◽  
Michele D. Kipke ◽  
...  

Abstract Background Treatment of a child who has an anxiety disorder usually begins with the question of which treatment to start first, medication or psychotherapy. Both have strong empirical support, but few studies have compared their effectiveness head-to-head, and none has investigated what to do if the treatment tried first isn’t working well—whether to optimize the treatment already begun or to add the other treatment. Methods This is a single-blind Sequential Multiple Assignment Randomized Trial (SMART) of 24 weeks duration with two levels of randomization, one in each of two 12-week stages. In Stage 1, children will be randomized to fluoxetine or Coping Cat Cognitive Behavioral Therapy (CBT). In Stage 2, remitters will continue maintenance-level therapy with the single-modality treatment received in Stage 1. Non-remitters during the first 12 weeks of treatment will be randomized to either [1] optimization of their Stage 1 treatment, or [2] optimization of Stage 1 treatment and addition of the other intervention. After the 24-week trial, we will follow participants during open, naturalistic treatment to assess the durability of study treatment effects. Patients, 8–17 years of age who are diagnosed with an anxiety disorder, will be recruited and treated within 9 large clinical sites throughout greater Los Angeles. They will be predominantly underserved, ethnic minorities. The primary outcome measure will be the self-report score on the 41-item youth SCARED (Screen for Child Anxiety Related Disorders). An intent-to-treat analysis will compare youth randomized to fluoxetine first versus those randomized to CBT first (“Main Effect 1”). Then, among Stage 1 non-remitters, we will compare non-remitters randomized to optimization of their Stage 1 monotherapy versus non-remitters randomized to combination treatment (“Main Effect 2”). The interaction of these main effects will assess whether one of the 4 treatment sequences (CBT➔CBT; CBT➔med; med➔med; med➔CBT) in non-remitters is significantly better or worse than predicted from main effects alone. Discussion Findings from this SMART study will identify treatment sequences that optimize outcomes in ethnically diverse pediatric patients from underserved low- and middle-income households who have anxiety disorders. Trial registration This protocol, version 1.0, was registered in ClinicalTrials.gov on February 17, 2021 with Identifier: NCT04760275.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Helena Beatriz Ferreira ◽  
Tânia Melo ◽  
Artur Paiva ◽  
Maria do Rosário Domingues

Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sidra Perveen ◽  
Shalu Kumari ◽  
Himali Raj ◽  
Shahla Yasmin

Abstract Background Fluoride may induce oxidative stress and apoptosis. It may also lead to neurobehavioural defects including neuromuscular damage. The present study aimed to explore the effects of sub lethal concentrations of sodium fluoride (NaF) on the lifespan and climbing ability of Drosophila melanogaster. In total, 0.6 mg/L and 0.8 mg/L of NaF were selected as sublethal concentrations of NaF for the study. Lifespan was measured and climbing activity assay was performed. Results The study showed significant decrease in lifespan of flies treated with fluoride. With increasing age, significant reduction in climbing activity was observed in flies treated with sodium fluoride as compared to normal (control) flies. Flies treated with tulsi (Ocimum sanctum) and NaF showed increase in lifespan and climbing activity as compared to those treated with NaF only. Lipid peroxidation assay showed significant increase in malondialdehyde (MDA) values in the flies treated with NaF as compared to control. The MDA values decreased significantly in flies treated with tulsi mixed with NaF. Conclusions The results indicate that exposure to sub lethal concentration of NaF may cause oxidative stress and affect the lifespan and climbing activity of D. melanogaster. Tulsi extract may help in reducing the impact of oxidative stress and toxicity caused by NaF.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 465
Author(s):  
Hesham F. Alharby ◽  
Hassan S. Al-Zahrani ◽  
Khalid R. Hakeem ◽  
Hameed Alsamadany ◽  
El-Sayed M. Desoky ◽  
...  

For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•− and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•−, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L−1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.


2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Taslima Nigar ◽  
Annekathryn Goodman ◽  
Shahana Pervin

Abstract Purpose Over the past several decades, research has suggested reactive oxygen species act as cofactors for cervical cancer development. The aim of this study is to evaluate the antioxidant and lipid peroxidation status in cervical cancer patients in Bangladesh. Methods From December 2017 to 2018, a cross-sectional observational study was conducted on 50 cervical cancer patients and 50 controls. Plasma levels of lipid peroxidation and total antioxidant capacity were measured. The Student’s t test was used for statistical analysis. P values less than 0.05 were taken as a level of significance. Results There was a significant reduction in total antioxidant levels in patients with cervical cancer, 972.77 ± 244.22 SD µmol equivalent to ascorbic acid/L, compared to normal controls, 1720.13 ± 150.81 SD µmol equivalent to ascorbic acid/L (P < 0.001). Levels of lipid peroxidation were found to be significantly higher in cervical cancer, 7.49 ± 2.13 SD µmol/L, than in women without cervical cancer, 3.28 ± 0.58 SD µmol/L (P < 0.001). The cervical cancer patients had significantly higher levels of oxidative stress index (0.83 ± 0.31) in comparison to controls (0.19 ± 0.04) (P < 0.001). Conclusion There was an increased oxidative stress index due to imbalance between lipid peroxidation generation and total antioxidant capacity in cervical cancer patients. Further studies are needed to explore the role of oxidative stress as a cofactor for cervical carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document