On prismatic and bending bifurcations of fiber-reinforced elastic membranes under swelling with application to aortic aneurysms

2021 ◽  
pp. 108128652110587
Author(s):  
Murtadha J. Al-Chlaihawi ◽  
Heiko Topol ◽  
Hasan Demirkoparan ◽  
José Merodio

The influence of swelling on prismatic and bending bifurcation modes of inflated thin-walled cylinders under axial loading is examined. The bifurcation criteria for a membrane cylinder subjected to combined axial loading, internal pressure, and swelling is provided. We consider orthotropic materials with two preferred directions which are mechanically equivalent and symmetrically disposed. The mechanical behavior of the matrix is described by a swellable isotropic model. The isotropic material is augmented with two functions that are equal, each one of them accounting for the existence of a unidirectional reinforcement. Two reinforcing models that depend only on the stretch in the fiber direction are considered: the so-called standard reinforcing model and an exponential one. The analysis of bifurcation modes for these models under the conditions at hand may establish the connection with modeling of the normal and diseased aorta in arterial wall tissue. The effects of the axial stretch, the strength of the fiber reinforcement and the fiber winding angle on the onset of prismatic and bending bifurcations are investigated. It is shown that for membranes without fibers, prismatic bifurcation is not feasible. On the other hand, bending bifurcation is more likely to occur for swollen cylinders. However, for a particular model of fiber-reinforced membranes, the standard model, there exists a domain of deformation values together with material constant values that may trigger prismatic bifurcation. The exponential model does not allow prismatic bifurcations. Both models allow bending bifurcation and may or may not trigger it depending on the deformation together with material parameters.

2015 ◽  
Vol 22 (4) ◽  
pp. 666-682 ◽  
Author(s):  
Hasan Demirkoparan ◽  
Jose Merodio

In this paper, we examine the influence of swelling on the bulging bifurcation of inflated thin-walled cylinders under axial loading. We provide the bifurcation criteria for a membrane cylinder subjected to combined axial loading, internal pressure and swelling. We focus here on orthotropic materials with two preferred directions which are mechanically equivalent and are symmetrically disposed. Arterial wall tissue is modeled with this class of constitutive equation and the onset of bulging is considered to give aneurysm formation. It is shown that swelling may lead to compressive hoop stresses near the inner radius of the tube, which could have a potential benefit for preventing aneurysm formation. The effects of the axial stretch, the strength of the fiber reinforcement and the fiber winding angle on the onset of bifurcation are investigated. Finally, a boundary value problem is studied to show the robustness of the results.


2019 ◽  
Vol 54 (6) ◽  
pp. 791-800
Author(s):  
Azam Arefi ◽  
Frans P van der Meer ◽  
Mohammad Reza Forouzan ◽  
Mohammad Silani ◽  
Mahmoud Salimi

In this paper, micromechanical simulations are employed to evaluate the performance of the Tsai–Wu and Hashin failure criteria for fiber-reinforced composites, especially in stress states whose experimental reproduction is complicated. Micromechanical responses are generated using a finite element model of a representative volume element, in which only the matrix material experiences damage and the fibers are assumed to be elastic. Micromechanical simulations of basic load cases are used to calibrate macrolevel criteria. Finally, the response of the micromodel and macromodels is compared for various load combinations. Despite a good agreement between Tsai–Wu criterion predictions and micromodel results in a wide range of stress states, some stress combinations are highlighted for which the strength is not predicted accurately. Additionally, accuracy of the Hashin criterion suffers from ignoring the influence of stress in fiber direction on matrix failure.


2020 ◽  
pp. 002199832094964
Author(s):  
Mojde Biarjemandi ◽  
Ehsan Etemadi ◽  
Mojtaba Lezgy-Nazargah

Recent researches show that the embedment of hollow spheres in the matrix phase of composite materials improves the strength of these structures against crack propagations. Rare studies are reported for calculating equivalent elastic constants of fiber reinforced composites containing hollow spheres. In this paper, the effects of hollow spheres on mechanical characteristics of fiber reinforced composite are studied for the first time. To achieve this aim, a micromechanics based finite element method is employed. Representative volume elements (RVEs) including hollow spheres with different radius, thickness and volume fraction of hollow spheres, are modeled by using 3D finite elements. The equivalent elastic constants are calculated through homogenization technique. The results are compared with available experimental works. Good agreements find between two sets of results. Also, the volume fraction, number and thickness of hollow spheres as effective parameters on mechanical properties of composite were investigated. The results show the equivalent elastic properties increase with increasing the volume fraction and number of hollow spheres and decrease with increasing the number of hollow spheres. Furthermore, the equivalent Young’s modulus in transverse directions to the fiber direction and shear modulus of the composite increase with increasing the thickness of hollow spheres. As a final result, the presence of hollow spheres in the matrix phase generally increases the equivalent elastic constants without significant changes in the weight of structures.


2019 ◽  
Vol 3 (1) ◽  
pp. 10 ◽  
Author(s):  
Andrey Krauklis ◽  
Abedin Gagani ◽  
Andreas Echtermeyer

Swelling in fiber-reinforced composites is anisotropic. In this work, dealing with glass fiber epoxy composite immersed in distilled water, swelling coefficients are obtained in each direction experimentally. Swelling behaviour in the fiber direction was constrained by the non-swelling fibers and was close to null, while swelling in the transverse directions was found to occur freely—similar to the unconstrained polymer. An analytical method for predicting anisotropic swelling in composites from the swelling of the matrix polymer is reported in this work. The method has an advantage that it is simple to use in practice and requires only a swelling coefficient of the matrix polymer, elastic constants of the matrix and fibers, and a known fiber volume fraction of the composite. The method was validated using finite element analysis. Good agreement was obtained and is reported between experimental hygroscopic swelling data, analytical and numerical results for composite laminates, indicating the validity of this predictive approach.


Author(s):  
Huan Wang

Matrix cracking affects the reliability and safety of fiber-reinforced ceramic-matrix composites during operation. The matrix cracking can be divided into two types, that is, steady state crack and non-steady state cracking. This chapter is about the non-steady stable cracking of fiber-reinforced CMCs. The micro stress field of fiber, matrix, and interface shear stress along the fiber direction is analyzed using the shear-lag model. The relationship between the crack opening displacement and the crack surface closure traction is derived. The experimental first matrix cracking stress of different CMCs are predicted.


Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1124
Author(s):  
Zhifang Liang ◽  
Hongwu Wu ◽  
Ruipu Liu ◽  
Caiquan Wu

Green biodegradable plastics have come into focus as an alternative to restricted plastic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison, random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and molding. The experimental results show that continuous long sisal fiber/PLA premixes could be successfully obtained from this pre-blending process. It was found that the presence of long sisal fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate in supporting the load applied to the composite material. However, when comparing the mechanical properties of the two composite materials, the poor compatibility between the fiber and the matrix made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and impact performance of LSFCs had been improved considerably versus SSFCs.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


Sign in / Sign up

Export Citation Format

Share Document