scholarly journals Leveraging the interplay between homogeneous and heterogeneous catalytic mechanisms: copper-iron nanoparticles working under chemically relevant tumor conditions

Author(s):  
Javier Bonet-Aleta ◽  
Miguel Encinas ◽  
Esteban Urriolabeitia ◽  
Pilar Martin-Duque ◽  
Jose L Hueso ◽  
...  

The present work sheds light on a generally overlooked issue in the emerging field of bio-orthogonal catalysis within tumor microenvironments (TMEs): the interplay between homogeneous and heterogeneous catalytic processes. In most cases, previous works dealing with nanoparticle-based catalysis in the TME, focus on the effects obtained (e.g. tumor cell death) and attribute the results to heterogeneous processes alone. The specific mechanisms are rarely substantiated and, furthermore, the possibility of a significant contribution of homogeneous processes by leached species –and the complexes that they may form with biomolecules- is neither contemplated nor pursued. Herein, we have designed a bimetallic catalyst nanoparticle containing Cu and Fe species and we have been able to describe the whole picture in a more complex scenario where both homogeneous and heterogeneous processes are coupled and fostered under TME relevant chemical conditions. We investigate the preferential leaching of Cu ions in the presence of a TME overexpressed biomolecule such as glutathione (GSH). We demonstrate that these homogeneous processes initiated by the released by Cu-GSH interactions are in fact responsible for the greater part of the cell death effects found (GSH, a scavenger of reactive oxygen species is depleted and highly active superoxide anions are generated in the same catalytic cycle). The remaining solid CuFe nanoparticle becomes an active catalase-mimicking surrogate able to supply oxygen from oxygen reduced species, such as superoxide anions (by-product from GSH oxidation) and hydrogen peroxide, another species that is enriched in the TME. This enzyme-like activity is essential to sustain the homogeneous catalytic cycle in the oxygen-deprived tumor microenvironment. The combined heterogeneous-homogeneous mechanisms revealed themselves as highly efficient in selectively killing cancer cells, due to their higher GSH levels compared to healthy cell lines.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Gan ◽  
Jingxiu Yang ◽  
David Morris ◽  
Xuefeng Chu ◽  
Peng Zhang ◽  
...  

AbstractActivation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 925
Author(s):  
Eva-Maria Faulhaber ◽  
Tina Jost ◽  
Julia Symank ◽  
Julian Scheper ◽  
Felix Bürkel ◽  
...  

(1) Kinase inhibitors (KI) targeting components of the DNA damage repair pathway are a promising new type of drug. Combining them with ionizing radiation therapy (IR), which is commonly used for treatment of head and neck tumors, could improve tumor control, but could also increase negative side effects on surrounding normal tissue. (2) The effect of KI of the DDR (ATMi: AZD0156; ATRi: VE-822, dual DNA-PKi/mTORi: CC-115) in combination with IR on HPV-positive and HPV-negative HNSCC and healthy skin cells was analyzed. Cell death and cell cycle arrest were determined using flow cytometry. Additionally, clonogenic survival and migration were analyzed. (3) Studied HNSCC cell lines reacted differently to DDRi. An increase in cell death for all of the malignant cells could be observed when combining IR and KI. Healthy fibroblasts were not affected by simultaneous treatment. Migration was partially impaired. Influence on the cell cycle varied between the cell lines and inhibitors; (4) In conclusion, a combination of DDRi with IR could be feasible for patients with HNSCC. Side effects on healthy cells are expected to be limited to normal radiation-induced response. Formation of metastases could be decreased because cell migration is impaired partially. The treatment outcome for HPV-negative tumors tends to be improved by combined treatment.


2020 ◽  
Vol 8 (1) ◽  
pp. e000325 ◽  
Author(s):  
Luna Minute ◽  
Alvaro Teijeira ◽  
Alfonso R Sanchez-Paulete ◽  
Maria C Ochoa ◽  
Maite Alvarez ◽  
...  

BackgroundThe immune response to cancer is often conceptualized with the cancer immunity cycle. An essential step in this interpretation is that antigens released by dying tumors are presented by dendritic cells to naive or memory T cells in the tumor-draining lymph nodes. Whether tumor cell death resulting from cytotoxicity, as mediated by T cells or natural killer (NK) lymphocytes, is actually immunogenic currently remains unknown.MethodsIn this study, tumor cells were killed by antigen-specific T-cell receptor (TCR) transgenic CD8 T cells or activated NK cells. Immunogenic cell death was studied analyzing the membrane exposure of calreticulin and the release of high mobility group box 1 (HMGB1) by the dying tumor cells. Furthermore, the potential immunogenicity of the tumor cell debris was evaluated in immunocompetent mice challenged with an unrelated tumor sharing only one tumor-associated antigen and by class I major histocompatibility complex (MHC)-multimer stainings. Mice deficient inBatf3,Ifnar1andSting1were used to study mechanistic requirements.ResultsWe observe in cocultures of tumor cells and effector cytotoxic cells, the presence of markers of immunogenic cell death such as calreticulin exposure and soluble HMGB1 protein. Ovalbumin (OVA)-transfected MC38 colon cancer cells, exogenously pulsed to present the gp100 epitope are killed in culture by mouse gp100-specific TCR transgenic CD8 T cells. Immunization of mice with the resulting destroyed cells induces epitope spreading as observed by detection of OVA-specific T cells by MHC multimer staining and rejection of OVA+EG7 lymphoma cells. Similar results were observed in mice immunized with cell debris generated by NK-cell mediated cytotoxicity. Mice deficient inBatf3-dependent dendritic cells (conventional dendritic cells type 1, cDC1) fail to develop an anti-OVA response when immunized with tumor cells killed by cytotoxic lymphocytes. In line with this, cultured cDC1 dendritic cells uptake and can readily cross-present antigen from cytotoxicity-killed tumor cells to cognate CD8+T lymphocytes.ConclusionThese results support that an ongoing cytotoxic antitumor immune response can lead to immunogenic tumor cell death.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 533
Author(s):  
Rania F. Zaarour ◽  
Bilal Azakir ◽  
Edries Y. Hajam ◽  
Husam Nawafleh ◽  
Nagwa A. Zeinelabdin ◽  
...  

Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.


2017 ◽  
Vol 13 (2) ◽  
pp. 204-220 ◽  
Author(s):  
Mans Broekgaarden ◽  
Ruud Weijer ◽  
AlbertC. van Wijk ◽  
RuudC. Cox ◽  
MaartenR. Egmond ◽  
...  

2021 ◽  
Vol 08 ◽  
Author(s):  
Vivek Srivastava

Background: Baylis-Hillman reaction suffers from the requirement of cheap starting materials, easy reaction protocol, possibility to create the chiral center in the reaction product has increased the synthetic efficacy of this reaction, and high catalyst loading, low reaction rate, and poor yield. Objective: The extensive use of various functional or non-functional ionic liquids (ILs) with organocatalyst increases the reaction rate of various organic transformations as a reaction medium and as a support to anchor the catalysts. Methods: In this manuscript, we have demonstrated the synthesis of quinuclidine-supported trimethylamine-based functionalized ionic liquid as a catalyst for the Baylis-Hillman reaction. Results: We obtained the Baylis-Hillman adducts in good, isolated yield, low catalyst loading, short reaction time, broad substrate scope, accessible product, and catalyst recycling. N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide was also successfully synthesized using CATALYST-3 promoted Baylis-Hillman reaction. Conclusion: We successfully isolated the 25 types of Baylis-Hillman adducts using three different quinuclidine-supported ammonium-based ionic liquids such as Et3AmQ][BF4] (CATALYST-1), [Et3AmQ][PF6] (CATALYST-2), and [TMAAmEQ][NTf2](CATALYST-3) as new and efficient catalysts. Tedious and highly active N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivative was also synthesized using CATALYST-3 followed by Baylis-Hillman reaction. Generally, all the responses demonstrated higher activity and yielded high competition with various previously reported homogenous and heterogeneous Catalytic systems. Easy catalyst and product recovery followed by six catalysts recycling were the added advantages of the prosed catalytic system.


2011 ◽  
Vol 399 (8) ◽  
pp. 2771-2778 ◽  
Author(s):  
Lucia Di Giambattista ◽  
Deleana Pozzi ◽  
Paola Grimaldi ◽  
Silvia Gaudenzi ◽  
Stefania Morrone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document