Monitoring analysis and environmental assessment of mine subsidence based on surface displacement monitoring

Author(s):  
Kuo Ding ◽  
Hui Li

Over the past several years, a metal mine by block caving method has experienced a long-term and progressive surface deformation and fracturing, and then we start our investigation based on this background. The location of surface rupture was based on a series of mapping activities and the deformation data was collected by GPS from 2013 to 2016. In this paper, emphasis was put on the analysis of the fissures, deformation and stress of surface subsidence. Results reveal the diversity magnitude and structural features of surface deformation and ground fissures. In addition, the time dependent behavior is comprehended and the subsidence zone reflects different types of time-displacement curve – regressive phase, steady phase and progressive phase, all these achievements indicate the complexity and diversity of the subsidence zone. On the other hand, stress calculation which inspired from the mechanical model of the cracking of hole wall is carried out, it is meaningful to understand the relation between fracture features, displacement vectors and horizontal stress.

2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


2020 ◽  
Author(s):  
Velio Coviello ◽  
Lucia Capra ◽  
Gianluca Norini ◽  
Norma Dávila ◽  
Dolores Ferrés ◽  
...  

Abstract. The M7.1 Puebla-Morelos earthquake that occurred on 19 September 2017, with epicenter located ∼ 70 km SW from Popocatépetl volcano, severely hit central Mexico. Seismic shaking of the volcanic edifice induced by the earthquake triggered hundreds of shallow landslides on the volcanic flanks, remobilizing loose pyroclastic deposits and saturated soils. The largest landslides occurred on the slopes of aligned ENE-WSW-trending ravines on opposite sides of the volcanic cone, roughly parallel to the regional maximum horizontal stress and local volcanotectonic structural features. This configuration may suggest transient reactivation of local faults and extensional fractures as one of the mechanisms that has weakened the volcanic edifice and promoted the largest slope failures. The seismic records from a broadband station located at few kilometers from the main landslides are used to infer the intensity of ground shaking that triggered the slope failures. The material involved in the larger landslides, mainly ash and pumice fall deposits from late Holocene eruptions with a total volume of about 106 cubic meters, transformed into two large debris flows on the western slope of the volcano and one on its eastern side. The debris flows were highly viscous and contained abundant large woods (about 105 cubic meter). Their peculiar rheology is reconstructed by field evidences and analyzing the grain size distribution of samples from both landslide scars and deposits. This is the first time that such flows were observed at this volcano. Our work provides new insights to constrain a multi-hazard risk assessment for Popocatépetl and other continental active volcanoes.


2021 ◽  
Author(s):  
Qiang Xie ◽  
Yuxin Ban ◽  
Zhihui Wu ◽  
Xiang Fu

<p>The sliding surface deformation of the soil slope mainly presents progressive failure characteristics, and serial acoustic emission (AE) signals are generated during the deformation process of progressive landslide. A model test aiming at reproducing the typical shear surface deformation of a soil slope is designed. The displacement, AE data and corresponding time-frequency characteristics are comprehensively analyzed to evaluate the progressive deformation behavior. Comparisons with different granular backfills measurements show that cumulative AE count increase proportionally with the shear surface displacement, and the experiments demonstrate that the glass sand backfill exhibits remarkable AE detection characteristics and stronger correlation results. Significantly, AE signal exhibits variational dominant frequencies at different deformation stages, and there is the significant phenomenon that not only the low frequency signals generated with a significantly increase number, at the same time the continuous high frequency signals appear during the accelerating deformation stage. Furthermore, from the statistical trend of the energy percentage of the high frequency band into 312.5~500 kHz, it’s found that the correlative energy proportion occupies up to 15%, or even higher during the accelerating stage, indicating that the landslide may be about to enter a severely dangerous stage. The experiments show that the frequency characteristic of the AE signal can be effectively used as the early warning index, which may be the promising reference of the field warning monitoring for the soil progressive landslides.</p>


2019 ◽  
Vol 220 (1) ◽  
pp. 585-597 ◽  
Author(s):  
Maria C Araya ◽  
Juliet Biggs

SUMMARY Tectonic slivers form in the overriding plate in regions of oblique subduction. The inner boundaries of the sliver are often poorly defined and can consist of well-defined faults, rotating blocks or diffuse fault systems, which pass through or near the volcanic arc. The Guanacaste Volcanic Arc Sliver (GVAS) as defined by Montero et al., is a segment of the Central American Forearc Sliver, whose inner boundary is the ∼87-km-long Haciendas-Chiripa fault system (HCFS), which is located ∼10 km behind the volcanic arc and consists of strike slip faults and pull apart steps. We characterize the current ground motion on this boundary by combining earthquake locations and focal mechanisms of the 2016 Bijagua earthquake sequence, with the surface ground deformation obtained from Interferometric Synthetic Aperture Radar (InSAR) images from the ALOS-2 satellite. The coseismic stack of interferograms show ∼6 cm of displacement towards the line of sight of the satellite between the Caño Negro fault and the Upala fault, indicating uplift or SE horizontal surface displacement. The largest recorded earthquake of the sequence was Mw 5.4, and the observed deformation is one of the smallest earthquakes yet detected by InSAR in the Central American region. Forward and inverse models show the surface deformation can be partially explained by slip on a single fault, but it can be better explained by slip along two faults linked at depth. The best-fitting model consists of 0.33 m of right lateral slip on the Caño Negro fault and 0.35 m of reverse slip on the Upala fault, forming a positive flower structure. As no reverse seismicity was recorded, we infer the slip on the Upala fault occurred aseismically. Observations of the Bijagua earthquake sequence suggests the forearc sliver boundary is a complex and diffuse fault system. There are localized zones of transpression and transtension and areas where there is no surface expression suggesting the fault system is not yet mature. Although aseismic slip is common on subduction interfaces and mature strike-slip faults, this is the first study to document aseismic slip on a continental tectonic sliver boundary fault.


2020 ◽  
Author(s):  
Karolina Owczarz ◽  
Anna Kopeć ◽  
Dariusz Głąbicki

<p>The level of intensity of induced seismic phenomena occurring in areas of mining activity is very diverse. Induced shocks may be directly related to the exploitation carried out or to mining and tectonic factors. In the case of impact on the surface, two types of mining tremors are distinguished: energetically weak shocks, not causing surface deformation, and shocks exceeding a certain energy level, which cause terrain deformations. Surface displacements are the most common form of the effects of underground mining operations, including induced seismicity. Geological research uses Sentinel-1 imagery to determine the geometry of surface displacements that were caused by induced shocks by satellite radar interferometry. In this research four induced shocks with magnitude M>4.0 was used, which occurred in the Legnica-Glogow Copper District in the Rudna mine. This area is one of the most seismically active places in Poland due to the underground exploitation of copper ore. For calculations, the differential satellite radar interferometry (DInSAR) method was used. The DInSAR technique allowed the determination of surface displacement towards the Line of Sight (LOS) between two images acquired at different times (before and after induced shock) with millimeter accuracy. In the presented research calculations were carried out separately for observations acquired in descending and ascending orbits. The Sentinel-1 satellites are a constellation of two radar satellites that observe the surface of lands and oceans at a time interval of 6 days. Therefore, 6 days, 12 days, 18 days and 24 days were assumed as the time intervals between the images. Vertical displacements were calculated based on the generated LOS displacement maps. In addition, charts of subsidence in the N-S and W-E directions were prepared, 3D models of subsidence were made, and deformation geometry was analyzed for individual shocks. As a result of the research, the spatial extent of deformation in the horizontal surface was determined: N-S and W-E, which in both directions was over 2 km. However, surface displacements caused by induced shocks reached values up to 10 cm.</p>


2020 ◽  
Vol 56 (1) ◽  
pp. 280
Author(s):  
Salvatore Scudero ◽  
Giorgio De Guidi ◽  
Riccardo Caputo ◽  
Vincenzo Perdicaro

Databases of tectonic stress indicators are commonly based on different types of observations at different spatial and temporal scales. Each single indicator can be variously representative of the real stress field and the relative importance of all the indicators should be accounted for before any following elaboration. We propose a semi-quantitative procedure which assigns weights to each indicator on the basis of its quality and its representative volume. In this way the indicators can be reliably combined to produce, for example, stress field maps or stress trajectories. The proposed weighting criterion has been applied to a dataset of 440 crustal stress indicators specifically compiled, gathering focal mechanisms and geological data from the literature, and original data from structural features derived from devoted fieldwork, for the southern part of the Calabrian Arc (Italy). This area represents an interesting case study because of its complex geodynamic and structural arrangement. Data were ranked and the orientation of the minimum horizontal stress (Sh) has been interpolated and smoothed on a regular grid. We drew maps of the principal stress axes and inferred the stress regimes over the investigated area. Results are in agreement with independent information from the literature and display the non-uniform orientation of the tectonic stresses and the occurrence of perturbations both at regional and local scale.


Author(s):  
M. Ali ◽  
M. I. Shahzad ◽  
M. Nazeer ◽  
J. H. Kazmi

Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.


2019 ◽  
Vol 11 (17) ◽  
pp. 1992 ◽  
Author(s):  
Qian Guo ◽  
Caijun Xu ◽  
Yangmao Wen ◽  
Yang Liu ◽  
Guangyu Xu

An unrest event occurred at the Cerro Azul volcano, Galápagos Islands, South America, in March 2017, leading to significant surface deformation on the southern Isabela Island, without eruption or surface rupture. We collected single-look complex synthetic aperture radar (SAR) images sensed by the Sentinel-1A satellite, obtaining eight differential interferograms, of which four showed extensive surface displacement during the co-unrest period. Geodetic data indicated that the unrest continued from 18 March to 25 March, reaching a negative peak displacement of −32.9 cm in the caldera and a positive peak displacement of 41.8 cm on the south-east plain in the line-of-sight direction. A joint magma source deformation model, consisting of a Mogi source below the caldera and a sill source south-east of the caldera, was inverted by the Markov chain Monte Carlo method combined with the Metropolis–Hasting algorithm, acquiring the best fit with the four interferograms. The magma transport mechanism of the event was explained by magma overflowing from the compressive Mogi to the tensile sill source, resulting in the observed “∞”-shaped deformation fields. Additionally, we investigated previous events with eruption rifts and lava lakes in 1979, 1998, and 2008, and proposed a potential hazard of tectonic volcanic activity for further volcanic susceptibility research in the Cerro Azul area.


2020 ◽  
Vol 10 (8) ◽  
pp. 2676 ◽  
Author(s):  
Jongsuh Lee ◽  
Thibaut Detroux ◽  
Gaëtan Kerschen

The objective of this study is to develop an optimization methodology to find a layout that traces a prescribed force–displacement curve through a topology optimization approach. To this end, we propose an objective function to minimize the difference between a prescribed force–displacement curve and the curve calculated at each iteration of the optimization process. Slope constraints are introduced to solve issues encountered when using a small number of target points. In addition, a projection filter is employed to suppress the gray region observed between the solid and void regions, which generally occurs when using a density-based filter. A recently proposed energy interpolation scheme is implemented to stabilize the instability in the nonlinear analysis, which generally results from excessive distortion in the void region when the structure is modeled on a fixed mesh in the topology optimization process. To validate the outlined methodology, several case studies with different types of nonlinearity and structural features of the obtained layouts are investigated.


2018 ◽  
Vol 10 (11) ◽  
pp. 1715 ◽  
Author(s):  
Magali Barba-Sevilla ◽  
Bridger Baird ◽  
Abbie Liel ◽  
Kristy Tiampo

The Cushing Hub in Oklahoma, one of the largest oil storage facilities in the world, is federally designated as critical national infrastructure. In 2014, the formerly aseismic city of Cushing experienced a Mw 4.0 and 4.3 induced earthquake sequence due to wastewater injection. Since then, an M4+ earthquake sequence has occurred annually (October 2014, September 2015, November 2016). Thus far, damage to critical infrastructure has been minimal; however, a larger earthquake could pose significant risk to the Cushing Hub. In addition to inducing earthquakes, wastewater injection also threatens the Cushing Hub through gradual surface uplift. To characterize the impact of wastewater injection on critical infrastructure, we use Differential Interferometric Synthetic Aperture Radar (DInSAR), a satellite radar technique, to observe ground surface displacement in Cushing before and during the induced Mw 5.0 event. Here, we process interferograms of Single Look Complex (SLC) radar data from the European Space Agency (ESA) Sentinel-1A satellite. The preearthquake interferograms are used to create a time series of cumulative surface displacement, while the coseismic interferograms are used to invert for earthquake source characteristics. The time series of surface displacement reveals 4–5.5 cm of uplift across Cushing over 17 months. The coseismic interferogram inversion suggests that the 2016 Mw 5.0 earthquake is shallower than estimated from seismic inversions alone. This shallower source depth should be taken into account in future hazard assessments for regional infrastructure. In addition, monitoring of surface deformation near wastewater injection wells can be used to characterize the subsurface dynamics and implement measures to mitigate damage to critical installations.


Sign in / Sign up

Export Citation Format

Share Document