yield stress increase
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2019 ◽  
Vol 7 (3) ◽  
Author(s):  
Jinjin Fang

To simulate the failure of loess under undrained condition in the actual engineering,a series of isotropic consolidation and shear tests with different intermediate principal stress ratio b under constant water content were performed on intact loess with various initial suctions using the true tri-axial apparatus for unsaturated soil. The relationship between the saturations and initial suctions,the characteristics of yield,suction and strength of unsaturated intact loess were studied. The results show that the initial suctions and the suctions after the isotropic consolidation decrease with the increase of saturations. The suctions increase with the increase of the intermediate principal stress ratio b at the true triaxial shear failure. The net mean yield stress increase with the increase of the initial suction. The yield suction is a constant,but not always equal to the maximum suction that the soil specimen experienced in the history. The strength of soil increase with the increase of the net confining pressure,initial suction and the intermediate principal stress ratio b.


Clay Minerals ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Pek-Ing Au ◽  
Mingyong Du ◽  
Jishan Liu ◽  
Md. Bashirul Haq ◽  
Yee-Kwong Leong

AbstractThe zeta potential and yield-stress behaviour of gels prepared from as-received SHCa-1 hectorite (Ht) containing 50 wt.% impurities, mainly of calcite, dolomite and quartz, were characterized. The zeta potential is negative in the pH range 4–12. At pH <5, reaction of CaCO3 producing CO2 and Ca2+ increased the solution conductivity significantly and reduced the zeta potential. The buffering effect due to this chemical reaction was also observed in the yield stress–pH characterization below pH 8. Low yield stress was observed below pH 6 and above pH 12. The yield stress peaked at pH ~8, where Ht displayed a zeta potential of –20 mV. The relationship between maximum yield stress and Ht content (wt.%) was linear and was not affected by impurities. The ageing behaviour was characterized by an initial phase of rapid yield-stress increase and then by a phase of gradual increase. The Leong model performed better than the two-parameter glassy polymer ageing model in describing this ageing behaviour. However, the empirical power law model was more accurate. The timescale of the ageing process is long, lasting several days. An open cellular microstructure was observed to form in the gels. Impurities appeared not to interact with or bind to the Ht platelets.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 594 ◽  
Author(s):  
Sandrine Thuillier ◽  
Shun-Lai Zang ◽  
Julien Troufflard ◽  
Pierre-Yves Manach ◽  
Anthony Jegat

This study is dedicated to the experimental characterisation and phenomenological modeling of the bake hardening effect of a thin steel sheet, to predict the static dent resistance and perform an experimental validation on a bulged part. In a first step, rectangular samples are submitted to a thermo-mechanical loading to characterise the bake hardening magnitude in tension. A three-step procedure is considered, involving first a pre-strain in tension up to several values followed by unloading. Secondly, a heat treatment during a fixed time and a given temperature is performed, and finally, a reloading in tension in the same direction as the pre-strain is applied. Then, a specific device is developed to perform dent tests on a bulged specimen, to evaluate the influence of bake hardening on the dent resistance. A three-step procedure is also considered, with a pre-strain applied with a hydraulic bulge test followed by a heat treatment and then static dent test at the maximum dome height. An original phenomenological model is proposed to represent the yield stress increase after the heat treatment and the second reloading. Material parameters are identified from the tensile tests and are input data to a finite element model. The numerical prediction of the load evolution during the dent test is then compared with experimental data and shows an overall good correlation.


2016 ◽  
Vol 838-839 ◽  
pp. 261-266
Author(s):  
Damir Tagirov ◽  
Rustam Kaibyshev

The liquid hot isostatic pressure in superplastic conditions was applied to eliminate macroporosity in a die cast Al-12%Si eutectic alloy. The removing of macroporosity provides the yield stress increase of 56%, the ultimate tensile strength increase of 46%, the total elongation increase of 21%, the fracture toughness increase of 340% and the fatigue strength increase of 58%. Remarkable improvement of mechanical properties is caused by suppression of crack initiation on internal coarse pores.


2011 ◽  
Vol 1297 ◽  
Author(s):  
Shin Taniguchi ◽  
Toshihiro Kameda

ABSTRACTThis study has investigated the crack growth retardation effect due to plural nano-scale voids in Cu single crystals using a molecular dynamics (MD) method. Focusing on an interaction between nano-scale voids and dislocations, we have evaluated the optimum placement for crack growth retardation. MD simulations showed that the dislocation activity was further enhanced due to plural nano-scale voids continuously placed on the primary slip direction. The significant ductility enhancement and slight yield stress increase due to the crack shielding effect of nano-scale voids were observed.


2008 ◽  
Vol 135 ◽  
pp. 119-122 ◽  
Author(s):  
Hyung Ha Jin ◽  
Chan Sun Shin ◽  
Wheung Whoe Kim

A change of the mechanical property and microstructure of an Fe ion irradiated polycrystalline Fe-9wt%Cr model alloy to 1 dpa was examined using a nano-indentation and transmission electron microscopy. We anticipated that irradiated damage would be formed up to about 2.5μm and a displacement damage peak would be located at around 1.7μm from a surface through a TRIM code calculation. A thick dark band was formed at about 1.5μm from a surface with an actual TEM observation, which is consistent with a displacement damage peak in the TRIM code calculation. TEM observations showed that small defects with a Burgers vector a0<100> and 1/2a0<110> are formed in irradiated Fe-9wt%Cr alloy. In the nano indentation test, the hardness increase due to irradiation induced defects was up to 0.6GPa which can be converted to a yield stress increase of 200MPa.


2007 ◽  
Vol 539-543 ◽  
pp. 756-762
Author(s):  
José A. Jiménez ◽  
Georg Frommeyer ◽  
Marta López ◽  
N. Candela ◽  
Oscar A. Ruano

Fully dense composite materials of M3/2 high speed steel reinforced with 5, 10 and 15vol. % of high purity niobium carbide were developed using powder metallurgy processing. This work describes and discusses the mechanical behavior of the various composite systems. Mechanical properties were characterized by Rockwell hardness, compression and three point bending tests. It was found that the addition of ceramic particles causes a very small increase in the hardness and 0.2% yield strength, but a decrease in the transverse rupture strength is observed. In order to eliminate the influence of martensite on the mechanical properties, measurements were also conducted after tempering. After this treatment, the reinforced materials showed a moderate yield stress increase at room temperature respect to the unreinforced M3/2. However, the bend strength values were not affected significantly by this treatment. At high temperatures, the addition of reinforcement particles causes a slight increase in the strength. Strain rate-change tests in compression were performed at strain rates ranging from 3 x 10-6 to 2 x 10-3 s-1 in the temperature range from 650 to 750°C. The deformation behaviour was characterized by a stress exponent ranging from 5 to 7 and an activation energy for plastic deformation similar to that found in high alloyed ferritic steels.


Sign in / Sign up

Export Citation Format

Share Document