scholarly journals Konjac Ceramide (kCer)-Mediated Signal Transduction of the Sema3A Pathway Promotes HaCaT Keratinocyte Differentiation

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Seigo Usuki ◽  
Noriko Tamura ◽  
Tomohiro Tamura ◽  
Kohei Yuyama ◽  
Daisuke Mikami ◽  
...  

Histamines suppress epidermal keratinocyte differentiation. Previously, we reported that konjac ceramide (kCer) suppresses histamine-stimulated cell migration of HaCaT keratinocytes. kCer specifically binds to Nrp1 and does not interact with histamine receptors. The signaling mechanism of kCer in HaCaT cells is also controlled by an intracellular signaling cascade activated by the Sema3A-Nrp1 pathway. In the present study, we demonstrated that kCer treatment induced HaCaT keratinocyte differentiation after migration of immature cells. kCer-induced HaCaT cell differentiation was accompanied by some features of keratinocyte differentiation markers. kCer induced activating phosphorylation of p38MAPK and c-Fos, which increased the protein levels of involucrin that was the latter differentiation marker. In addition, we demonstrated that the effects of both kCer and histamines are regulated by an intracellular mechanism of Rac1 activation/RhoA inhibition downstream of the Sema3A/Nrp1 receptor and histamine/GPCR pathways. In summary, the effects of kCer on cell migration and cell differentiation are regulated by cascade crosstalk between downstream Nrp1 and histamine-GPCR pathways in HaCaT cells.

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Akihiro Aioi ◽  
Takuhiro Yamada

Perturbation of cutaneous homeostasis including immune dysregulation and skin barrier dysfunction evokes skin disorders. In this study, we examined the effect of Eucalyptus citriodora (Euc-c) extract on cytokine production, cell proliferation and cell differentiation in HaCaT cells to elucidate its influence on cutaneous homeostasis. Euc-c suppressed significantly LPS-induced IL-6 and TNF-a-induced IL-8 production from HaCaT cells. Conversely IL-1ra production was significantly enhanced by Euc-c. The expressions of IVL, CERS3 and CERS4, keratinocyte differentiation markers, were upregulated to 3.1, 2.8 and 2.7-fold respectively by Euc-c treatment, compared to the control, while the proliferation was downregulated. The lipid contents in Euc-c-treated cells tended to increase, compared with non-treated cells. To explore the underlying mechanism of these effect, we next performed siRNA experiments against PPAR-b/d. Euc-c enhanced PPAR-b/d mRNA expression to 3.25-fold, while PPAR-b/d mRNA expression in transfected cells was suppressed. The expressions of IVL, CERS3 and CERS4 in transfected cells were suppressed to 1.48, 0.82 and 0.72-fold respectively, concomitant with suppression of PPAR-b/d mRNA expression. These results indicated that Euc-c exerts anti-inflammatory effects and regulates keratinocyte differentiation via the modulation of PPAR-b/d pathway. Therefore, the application of Euc-c is expected to exert beneficial effect on skin disorders evoked by perturbation of skin homeostasis.Key words: Eucalyptus citriodora, PPAR-b/d, inflammation, barrier function, cutaneous homeostasis


1999 ◽  
Vol 112 (24) ◽  
pp. 4569-4579
Author(s):  
M.D. Hines ◽  
H.C. Jin ◽  
M.J. Wheelock ◽  
P.J. Jensen

Cadherin function is required for normal keratinocyte intercellular adhesion and stratification. In the present study, we have investigated whether cadherin-cadherin interactions may also modulate keratinocyte differentiation, as evidenced by alterations in the levels of several differentiation markers. Confluent keratinocyte cultures, propagated in low Ca(2+) medium in which cadherins are not active, were pre-incubated with antibodies that block the function of E-cadherin and/or P-cadherin; Ca(2+)was then elevated to 1 mM to activate the cadherins and induce differentiation. In control cultures (incubated with no antibody or with antibodies to other cell surface molecules), Ca(2+) elevation induced an increase in type 1 transglutaminase, profilaggrin, and loricrin, as measured by western blotting and in agreement with previous results. However, the concurrent addition of antibodies against both E- and P-cadherin prevented this increase in transglutaminase 1 protein. Incubation with either antibody alone had no consistent effect. Profilaggrin and loricrin, which are later markers of keratinocyte differentiation, responded differently from transglutaminase 1 to addition of antibodies. In the presence of anti-E-cadherin antibody, both loricrin and profilaggrin levels were dramatically enhanced compared to the high Ca(2+) control cells, while addition of antibody to P-cadherin slightly attenuated the Ca(2+)-induced increase. In the presence of both antibodies, loricrin and profilaggrin protein levels were intermediate between those observed in the presence of either antibody alone. The expression of involucrin, however, was unaffected by addition of antibodies. In addition, effects of the anti-cadherin antibodies were not secondary to alterations in proliferation or programmed cell death, as determined by several independent assays of these processes. Thus, the consequences of cadherin inhibition depend upon both the particular cadherin and the differentiation marker under study. Taken together, these data suggest that E-cadherin and P-cadherin contribute to the orderly progression of terminal differentiation in the epidermis in multiple ways.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1238 ◽  
Author(s):  
Yuna Ha ◽  
Won-Hwi Lee ◽  
JaeWoo Jeong ◽  
Mira Park ◽  
Ju-Young Ko ◽  
...  

Pyropia yezoensis, a red alga, is popular and harvested a lot in East Asia and is famous for its medicinal properties attributable to its bioactive compounds including amino acids (porphyra-334 and shinorine, etc.), polysaccharides, phytosterols, and pigments, but its anti-inflammatory effect and mechanism of anti-atopic dermatitis (AD) have not been elucidated. In this study, we investigate the anti-AD effect of P. yezoensis extract (PYE) on mRNA and protein levels of the pro-inflammatory chemokines, thymus, and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), in human HaCaT keratinocyte cells treated to interferon (IFN)-γ or tumor necrosis factor (TNF)-α (10 ng/mL each). The effect of the PYE on extracellular signal-regulated kinase (ERK) and other mitogen-activated protein kinases (MAPKs) was related to its suppression of TARC and MDC production by blocking NF-κB activation in HaCaT cells. Furthermore, astaxanthin and xanthophyll from P. yezoensis were identified as anti-AD candidate compounds. These results suggest that the PYE may improve AD and contained two carotenoids by regulating pro-inflammatory chemokines.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4583 ◽  
Author(s):  
Eunju Choi ◽  
Young-Gyu Kang ◽  
So-Hyeon Hwang ◽  
Jin Kyeong Kim ◽  
Yong Deog Hong ◽  
...  

Dehydrotrametenolic acid (DTA) is a lanostane-type triterpene acid isolated from Poria cocos Wolf (Polyporaceae). Several studies have reported the anti-inflammatory and antidiabetic effects of DTA; however, its effects on the skin are poorly understood. In this study, we investigated the effects of DTA on skin barrier function in vitro and its regulatory mechanism in human keratinocyte cell line HaCaT cells. DTA increased the microRNA (mRNA) expression of natural moisturizing factor-related genes, such as HAS-2, HAS-3, and AQP3 in HaCaT cells. DTA also upregulated the mRNA expression of various keratinocyte differentiation markers, including TGM-1, involucrin, and caspase-14. Moreover, the protein expression of HAS-2, HAS-3, and TGM-2 were significantly increased by DTA. To examine the regulatory mechanisms of DTA, Western blotting, luciferase-reporter assays, and RT-PCR were conducted. The phosphorylation of mitogen-activated protein kinases (MAPKs) and IκBα were increased in DTA-treated HaCaT cells. In addition, AP-1 and NF-κB transcriptional factors were dose-dependently activated by DTA. Taken together, our in vitro mechanism studies indicate that the regulatory effects of DTA on skin hydration and keratinocyte differentiation are mediated by the MAPK/AP-1 and IκBα/NF-κB pathways. In addition, DTA could be a promising ingredient in cosmetics for moisturizing and increased skin barrier function.


2000 ◽  
Vol 279 (4) ◽  
pp. C1045-C1057 ◽  
Author(s):  
Andrea Quaroni ◽  
Jean Q. Tian ◽  
Prem Seth ◽  
Colette Ap Rhys

Constant renewal of the intestinal epithelium is a highly coordinated process that has been subject to intense investigation, but its regulatory mechanisms are still essentially unknown. In this study, we have demonstrated that forced expression of the cyclin-dependent kinase inhibitors (CKIs) p27Kip1 and p21Cip1/WAF1 in human intestinal epithelial cells led to expression of differentiation markers at both the mRNA and protein levels. Cell differentiation was temporally dissociated from inhibition of retinoblastoma protein phosphorylation and growth arrest, already established 1 day after infection with recombinant adenoviruses. p27Kip1 proved significantly more efficient than p21Cip1/WAF1 in induction of cell differentiation. In contrast, forced expression of p16INK4a resulted in growth arrest without induction of differentiation markers. These results implicate both p27Kip1 and p21Cip1/WAF1 in the differentiation-timing process, but p21Cip1/WAF1 may act indirectly by increasing p27Kip1 levels. These results also suggest that induction of intestinal epithelial cell differentiation by CKIs is not related to their effects on the cell cycle and may involve interactions with cellular components other than cyclins and cyclin-dependent kinases.


2020 ◽  
Vol 4 (2) ◽  
pp. 23
Author(s):  
Takuhiro Yamada ◽  
Akihiro Aioi

Perturbation of cutaneous homeostasis including immune dysregulation and skin barrier dysfunction evokes skin disorders. In this study, we examined the effect of Eucalyptus citriodora (Euc-c) extract on cytokine production, cell proliferation and cell differentiation in HaCaT cells to elucidate its influence on cutaneous homeostasis. Euc-c suppressed significantly LPS-induced IL-6 and TNF-a-induced IL-8 production from HaCaT cells. Conversely IL-1ra production was significantly enhanced by Euc-c. The expressions of IVL, CERS3 and CERS4, keratinocyte differentiation markers, were upregulated to 3.1, 2.8 and 2.7-fold respectively by Euc-c treatment, compared to the control, while the proliferation was downregulated. The lipid contents in Euc-c-treated cells tended to increase, compared with non-treated cells. To explore the underlying mechanism of these effect, we next performed siRNA experiments against PPAR-b/d. Euc-c enhanced PPAR-b/d mRNA expression to 3.25-fold, while PPAR-b/d mRNA expression in transfected cells was suppressed. The expressions of IVL, CERS3 and CERS4 in transfected cells were suppressed to 1.48, 0.82 and 0.72-fold respectively, concomitant with suppression of PPAR-b/d mRNA expression. These results indicated that Euc-c exerts anti-inflammatory effects and regulates keratinocyte differentiation via the modulation of PPAR-b/d pathway. Therefore, the application of Euc-c is expected to exert beneficial effect on skin disorders evoked by perturbation of skin homeostasis.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Fazli Subhan ◽  
Hae Yeong Kang ◽  
Yeseon Lim ◽  
Muhammad Ikram ◽  
Sun-Yong Baek ◽  
...  

Skin diseases associated with inflammation or oxidative stress represent the most common problem in dermatology. The present study demonstrates that fish scale collagen peptides (FSCP) protect against CoCl2-induced cytotoxicity and TNF-α-induced inflammatory responses in human HaCaT keratinocyte cells. Our study is the first to report that FSCP increase cell viability and ameliorate oxidative injury in HaCaT cells through mechanisms mediated by the downregulation of key proinflammatory cytokines, namely, TNF-α, IL-1β, IL-8, and iNOS. FSCP also prevent cell apoptosis by repressing Bax expression, caspase-3 activity, and cytochrome c release and by upregulating Bcl-2 protein levels in CoCl2- or TNF-α-stimulated HaCaT cells. In addition, the inhibitory effects of FSCP on cytotoxicity and the induction of proinflammatory cytokine expression were found to be associated with suppression of the ROS, MAPK (p38/MAPK, ERK, and JNK), and NF-κB signaling pathways. Taken together, our data suggest that FSCP are useful as immunomodulatory agents in inflammatory or immune-mediated skin diseases. Furthermore, our results provide new insights into the potential therapeutic use of FSCP in the prevention and treatment of various oxidative- or inflammatory stress-related inflammation and injuries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael A. Schumacher ◽  
Jonathan J. Hsieh ◽  
Cambrian Y. Liu ◽  
Keren L. Appel ◽  
Amanda Waddell ◽  
...  

AbstractDynamic regulation of intestinal cell differentiation is crucial for both homeostasis and the response to injury or inflammation. Sprouty2, an intracellular signaling regulator, controls pathways including PI3K and MAPKs that are implicated in differentiation and are dysregulated in inflammatory bowel disease. Here, we ask whether Sprouty2 controls secretory cell differentiation and the response to colitis. We report that colonic epithelial Sprouty2 deletion leads to expanded tuft and goblet cell populations. Sprouty2 loss induces PI3K/Akt signaling, leading to GSK3β inhibition and epithelial interleukin (IL)-33 expression. In vivo, this results in increased stromal IL-13+ cells. IL-13 in turn induces tuft and goblet cell expansion in vitro and in vivo. Sprouty2 is downregulated by acute inflammation; this appears to be a protective response, as VillinCre;Sprouty2F/F mice are resistant to DSS colitis. In contrast, Sprouty2 is elevated in chronic colitis and in colons of inflammatory bowel disease patients, suggesting that this protective epithelial-stromal signaling mechanism is lost in disease.


2020 ◽  
Author(s):  
Guanjun Deng ◽  
Xinghua Peng ◽  
Zhihong Sun ◽  
Wei Zheng ◽  
Jia Yu ◽  
...  

Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. In this paper, we developed a natural killer cell-mimic AIE nanoterminator (NK@AIEdots) by coating natural kill cell membrane on the AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owning to the AIE and soft-matter characteristics of PBPTV, as-prepared nanoterminator maintained the superior NIR-II brightness (quantum yield ~8%) and good biocompatibility. Besides, they could serve as tight junctions (TJs) modulator to trigger an intracellular signaling cascade, causing TJs disruption and actin cytoskeleton reorganization to form intercellular “green channel” to help themselves crossing Blood-Brain Barriers (BBB) silently. Furthermore, they could initiatively accumulate to glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these nanoterminator under the NIR light illumination. As far as we known, The QY of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots will open new avenue for BBB-crossing delivery.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


Sign in / Sign up

Export Citation Format

Share Document