alternative magnetic field
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Li Liu ◽  
Wenjing Song ◽  
Shaohua Jiang ◽  
Gaigai Duan ◽  
Xiaohong Qin

An alternative magnetic field (AMF)-induced electrospun fibrous thermoresponsive composite actuator showing penetrable remote-control ability with fast response is shown here for the first time. The built-in heater of magnetothermal Fe3O4 nanoparticles in the actuator and the porous structure of the fibrous layer contribute to a fast actuation with a curvature of 0.4 mm−1 in 2 s. The higher loading amount of the Fe3O4 nanoparticles and higher magnetic field strength result in a faster actuation. Interestingly, the composite actuator showed a similar actuation even when it was covered by a piece of Polytetrafluoroethylene (PTFE) film, which shows a penetrable remote-control ability.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3980
Author(s):  
Charlotte Boitard ◽  
Aude Michel ◽  
Christine Ménager ◽  
Nébéwia Griffete

The inhibition of the protein function for therapeutic applications remains challenging despite progress these past years. While the targeting application of molecularly imprinted polymer are in their infancy, no use was ever made of their magnetic hyperthermia properties to damage proteins when they are coupled to magnetic nanoparticles. Therefore, we have developed a facile and effective method to synthesize magnetic molecularly imprinted polymer nanoparticles using the green fluorescent protein (GFP) as the template, a bulk imprinting of proteins combined with a grafting approach onto maghemite nanoparticles. The hybrid material exhibits very high adsorption capacities and very strong affinity constants towards GFP. We show that the heat generated locally upon alternative magnetic field is responsible of the decrease of fluorescence intensity.


2021 ◽  
Vol 7 ◽  
Author(s):  
Adityanarayan Mohapatra ◽  
Saji Uthaman ◽  
In-Kyu Park

Therapeutic, diagnostic, and imaging approaches based on nanotechnology offer distinct advantages in cancer treatment. Various nanotherapeutics have been presented as potential alternatives to traditional anticancer therapies such as chemotherapy, radiotherapy, and surgical intervention. Notably, the advantage of nanotherapeutics is mainly attributable to their accumulation and targeting ability toward cancer cells, multiple drug-carrying abilities, combined therapies, and imaging approaches. To date, numerous nanoparticle formulations have been developed for anticancer therapy and among them, metallic nanotherapeutics reportedly demonstrate promising cancer therapeutic and diagnostic efficiencies owing to their dense surface functionalization ability, uniform size distribution, and shape-dependent optical responses, easy and cost-effective synthesis procedure, and multiple anti-cancer effects. Metallic nanotherapeutics can remodel the tumor microenvironment by changing unfavorable therapeutic conditions into therapeutically accessible ones with the help of different stimuli, including light, heat, ultrasound, an alternative magnetic field, redox, and reactive oxygen species. The combination of metallic nanotherapeutics with both external and internal stimuli can be used to trigger the on-demand release of therapeutic molecules, augmenting the therapeutic efficacies of anticancer therapies such as photothermal therapy, photodynamic therapy, magnetic hyperthermia, sonodynamic therapy, chemodynamic therapy, and immunotherapy. In this review, we have summarized the role of different metallic nanotherapeutics in anti-cancer therapy, as well as their combinational effects with multiple stimuli for enhanced anticancer therapy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 149
Author(s):  
Marie-Charlotte Horny ◽  
Jean Gamby ◽  
Vincent Dupuis ◽  
Jean-Michel Siaugue

Magnetic hyperthermia on core-shell nanoparticles bears promising achievements, especially in biomedical applications. Here, thanks to magnetic hyperthermia, γ-Fe2O3 cores are able to release a DNA target mimicking the liver specific oncotarget miRNA-122. Our silica coated magnetic nanoparticles not only allow the grafting at their surface of a significant number of oligonucleotides but are also shown to be as efficient, by local heating, as 95 °C global heating when submitted to an alternative magnetic field, while keeping the solution at 28 °C, crucial for biological media and energy efficiency. Moreover, a slight modification of the silica coating process revealed an increased heating power, well adapted for the release of small oligonucleotides such as microRNA.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Zhang ◽  
Xiaoyong Wang ◽  
Chengchao Chu ◽  
Zijian Zhou ◽  
Biaoqi Chen ◽  
...  

Abstract The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with an ultrahigh specific absorption rate of 2390 W/g to overcome the critical issues of MHT. We also show that eMIONs act as a nanozyme and have enhanced catalase-like activity in the presence of an alternative magnetic field, leading to tumor angiogenesis inhibition with a corresponding sharp decrease in the expression of HIF-1α. The inherent excellent magnetic-heat capability, coupled with catalysis-triggered tumor suppression, allows eMIONs to provide an MRI-guided magneto-catalytic combination therapy, which may open up a new avenue for bench-to-bed translational research of MHT.


2020 ◽  
Vol 324 ◽  
pp. 598-609
Author(s):  
Fei Gao ◽  
Xiaolian Li ◽  
Tingbin Zhang ◽  
Anujit Ghosal ◽  
Guifeng Zhang ◽  
...  

2018 ◽  
Vol 787 ◽  
pp. 81-86 ◽  
Author(s):  
Ling Xiao Yin ◽  
Jing Ling Chen

We describe a method for measuring the spin spatial frequency response in a Cs vapor cell by using a digital micro-mirror device (DMD) to modulate the pumping light both spatially and temporally. An equivalent space-alternative magnetic field is created by this way. The pumping light through the Cs vapor cell is measured and analyzed in spatial frequency domain. We obtain the spatial frequency response of the Cs vapor cell from 1.4 cm-1to 364.9 cm-1. The theoretical results of the spatial frequency response according to Fick's second diffusion law agree with the experimental results. This method provides an alternate approach for spatial characterization and three-dimensional imaging of spins.


Sign in / Sign up

Export Citation Format

Share Document