scholarly journals The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase

2020 ◽  
Vol 48 (21) ◽  
pp. 12252-12268
Author(s):  
Małgorzata Cieśla ◽  
Tomasz W Turowski ◽  
Marcin Nowotny ◽  
David Tollervey ◽  
Magdalena Boguta

Abstract The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3′ untranslated regions (3′UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.

1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


Genome ◽  
2017 ◽  
Vol 60 (6) ◽  
pp. 537-545 ◽  
Author(s):  
Kumiko Ui-Tei ◽  
Shohei Maruyama ◽  
Yuko Nakano

Genomic engineering using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein is a promising approach for targeting the genomic DNA of virtually any organism in a sequence-specific manner. Recent remarkable advances in CRISPR/Cas technology have made it a feasible system for use in therapeutic applications and biotechnology. In the CRISPR/Cas system, a guide RNA (gRNA), interacting with the Cas protein, recognizes a genomic region with sequence complementarity, and the double-stranded DNA at the target site is cleaved by the Cas protein. A widely used gRNA is an RNA polymerase III (pol III)-driven single gRNA (sgRNA), which is produced by artificial fusion of CRISPR RNA (crRNA) and trans-activation crRNA (tracrRNA). However, we identified a TTTT stretch, known as a termination signal of RNA pol III, in the scaffold region of the sgRNA. Here, we revealed that sgRNA carrying a TTTT stretch reduces the efficiency of sgRNA transcription due to premature transcriptional termination, and decreases the efficiency of genome editing. Unexpectedly, it was also shown that the premature terminated sgRNA may have an adverse effect of inducing RNA interference. Such disadvantageous effects were avoided by substituting one base in the TTTT stretch.


1997 ◽  
Vol 17 (10) ◽  
pp. 5823-5832 ◽  
Author(s):  
J L Goodier ◽  
H Fan ◽  
R J Maraia

Human La protein has been shown to serve as a transcription factor for RNA polymerase III (pol III) by facilitating transcription termination and recycling of transcription complexes. In addition, La binds to the 3' oligo(U) ends common to all nascent pol III transcripts, and in the case of B1-Alu RNA, protects it from 3'-end processing (R. J. Maraia, D. J. Kenan, and J. D. Keene, Mol. Cell. Biol. 14:2147-2158, 1994). Others have previously dissected the La protein into an N-terminal domain that binds RNA and a C-terminal domain that does not. Here, deletion and substitution mutants of La were examined for general RNA binding, RNA 3'-end protection, and transcription factor activity. Although some La mutants altered in a C-terminal basic region bind RNA in mobility shift assays, they are defective in RNA 3'-end protection and do not support transcription, while one C-terminal substitution mutant is defective only in transcription. Moreover, a C-terminal fragment lacking RNA binding activity appears able to support low levels of transcription by pol III. While efficient multiround transcription is supported only by mutants that bind RNA and contain a C-terminal basic region. These analyses indicate that RNA binding contributes to but is not sufficient for La transcription factor activity and that the C-terminal domain plays a role in transcription that is distinguishable from simple RNA binding. The transcription factor activity of La can be reversibly inhibited by RNA, suggesting the potential for feedback inhibition of pol III transcription.


1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158 ◽  
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


2004 ◽  
Vol 24 (10) ◽  
pp. 4229-4240 ◽  
Author(s):  
Christopher J. Webb ◽  
Jo Ann Wise

ABSTRACT The small subunit of U2AF, which functions in 3′ splice site recognition, is more highly conserved than its heterodimeric partner yet is less thoroughly investigated. Remarkably, we find that the small subunit of Schizosaccharomyces pombe U2AF (U2AFSM) can be replaced in vivo by its human counterpart, demonstrating that the conservation extends to function. Precursor mRNAs accumulate in S. pombe following U2AFSM depletion in a time frame consistent with a role in splicing. A comprehensive mutational analysis reveals that all three conserved domains are required for viability. Notably, however, a tryptophan in the pseudo-RNA recognition motif implicated in a key contact with the large subunit by crystallographic data is dispensable whereas amino acids implicated in RNA recognition are critical. Mutagenesis of the two zinc-binding domains demonstrates that they are neither equivalent nor redundant. Finally, two- and three-hybrid analyses indicate that mutations with effects on large-subunit interactions are rare whereas virtually all alleles tested diminished RNA binding by the heterodimer. In addition to demonstrating extraordinary conservation of U2AF small-subunit function, these results provide new insights into the roles of individual domains and residues.


2004 ◽  
Vol 24 (17) ◽  
pp. 7392-7401 ◽  
Author(s):  
Jan Medenbach ◽  
Silke Schreiner ◽  
Sunbin Liu ◽  
Reinhard Lührmann ◽  
Albrecht Bindereif

ABSTRACT After each spliceosome cycle, the U4 and U6 snRNAs are released separately and are recycled to the functional U4/U6 snRNP, requiring in the mammalian system the U6-specific RNA binding protein p110 (SART3). Its domain structure is made up of an extensive N-terminal domain with at least seven tetratricopeptide repeat (TPR) motifs, followed by two RNA recognition motifs (RRMs) and a highly conserved C-terminal sequence of 10 amino acids. Here we demonstrate under in vitro recycling conditions that U6-p110 is an essential splicing factor. Recycling activity requires both the RRMs and the TPR domain but not the highly conserved C-terminal sequence. For U6-specific RNA binding, the two RRMs with some flanking regions are sufficient. Yeast two-hybrid assays reveal that p110 interacts through its TPR domain with the U4/U6-specific 90K protein, indicating a specific role of the TPR domain in spliceosome recycling. On the 90K protein, a short internal region (amino acids 416 to 550) suffices for the interaction with p110. Together, these data suggest a model whereby p110 brings together U4 and U6 snRNAs through both RNA-protein and protein-protein interactions.


2005 ◽  
Vol 25 (2) ◽  
pp. 621-636 ◽  
Author(s):  
Ying Huang ◽  
Robert V. Intine ◽  
Amy Mozlin ◽  
Samuel Hasson ◽  
Richard J. Maraia

ABSTRACT Termination by RNA polymerase III (Pol III) produces RNAs whose 3′ oligo(U) termini are bound by La protein, a chaperone that protects RNAs from 3′ exonucleases and promotes their maturation. Multiple reports indicate that yeasts use La-dependent and -independent pathways for tRNA maturation, with defective pre-tRNAs being most sensitive to decay and most dependent on La for maturation and function. The Rpc11p subunit of Pol III shows homology with the zinc ribbon of TFIIS and is known to mediate RNA 3′ cleavage and to be important for termination. We used a La-dependent opal suppressor, tRNASerUGAM, which suppresses ade6-704 and the accumulation of red pigment, to screen Schizosaccaromyces pombe for rpc11 mutants that increase tRNA-mediated suppression. Analyses of two zinc ribbon mutants indicate that they are deficient in Pol III RNA 3′ cleavage activity and produce pre-tRNASerUGAM transcripts with elongated 3′-oligo(U) tracts that are better substrates for La. A substantial fraction of pre-tRNASerUGAM contains too few 3′ Us for efficient La binding and appears to decay in wild-type cells but has elongated oligo(U) tracts and matures along the La-dependent pathway in the mutants. The data indicate that Rpc11p limits RNA 3′-U length and that this significantly restricts pre-tRNAs to a La-independent pathway of maturation in fission yeast.


2003 ◽  
Vol 14 (6) ◽  
pp. 2425-2435 ◽  
Author(s):  
Chen Wang ◽  
Joan C. Politz ◽  
Thoru Pederson ◽  
Sui Huang

The perinucleolar compartment (PNC) is a nuclear substructure present in transformed cells. The PNC is defined by high concentrations of certain RNA binding proteins and a subset of small RNAs transcribed by RNA polymerase III (pol III), including the signal recognition particle RNA and an Alu RNA as reported here. To determine if the PNC is dependent on pol III transcription, HeLa cells were microinjected with the selective pol III inhibitor, Tagetin. This resulted in disassembly of the PNC, whereas inhibition of pol I by cycloheximide or pol II by α-amanitin did not significantly affect the PNC. However, overexpression of one of the PNC-associated RNAs from a pol II promoter followed by injection of Tagetin blocked the Tagetin-induced PNC disassembly, demonstrating that it is the RNA rather than pol III activity that is important for the PNC integrity. To elucidate the role of the PNC-associated protein PTB, its synthesis was inhibited by siRNA. This resulted in a reduction of the number of PNC-containing cells and the PNC size. Together, these findings suggest, as a working model, that PNCs may be involved in the metabolism of specific pol III transcripts in the transformed state and that PTB is one of the key elements mediating this process.


2005 ◽  
Author(s):  
◽  
Qun Zheng

In eukaryotes, two large subunits form the core catalytic structure of RNA polymerase III (Pol III), which is conserved in other RNA polymerases, Pol I and Pol II. It has been found that Pol III activity is tightly associated to cell growth. TFIII B has been shown to be one of main mediators in this process. No regulation of the Pol III largest subunit gene has been found. In C. elegans, the rpc-1 gene encodes the largest subunit of Pol III. Here, I identified two critical structural components of RPC-1, Gly644 and Gly1055, whose mutations result in larval lethal arrestment. These two amino acid residues are universally conserved in RNA polymerases, indicating their overall involvement in gene transcription mechanism. Also, I found that maternally inherited, not embryonically expressed, rpc-1 gene products survive early development. Starvation was found to suppress rpc-1 gene expression and re-feeding treatment enhances rpc-1 gene expression rapidly. No similar regulation was detected in genes encoding largest subunits of Pol I and Pol II. This is the first time that rpc-1 gene regulation has been reported. Insulin signaling may not be involved in this regulation. Also, I found that rpc-1 promoter is not ubiquitously active in C. elegans. Using the rpc-1p::gfp transgene, the rpc-1 promoter activity is only detected in a subset of neurons in the head and the tail and the intestine. While starvation silences the rpc-1 promoter activity in most tissues and cells, ASK neurons still show GFP staining in the rpc-1p::gfp transgenic animals, indicating that rpc-1 transcription in ASK neurons is continuously active under starvation conditions. Further studies suggest that TGF-[beta] signaling is involved in mediating the rpc-1 promoter activity in ASK neurons.


Sign in / Sign up

Export Citation Format

Share Document