pheromone system
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 1)

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 926
Author(s):  
Lulu Dai ◽  
Haiming Gao ◽  
Hui Chen

Bark beetles overcome the toxic terpenoids produced by pine trees by both detoxifying and converting them into a pheromone system. Detoxification enzymes such as cytochrome P450s, glutathione S-transferases, and carboxylesterases are involved in the ability of Dendroctonus armandi to adapt to its chemical environment. Ten genes from these three major classes of detoxification enzymes were selected to study how these enzymes help D. armandi to respond to the host defenses. The expression profile of these detoxification enzyme genes was observed in adult beetles after feeding on different types of diet. Significant differences were observed between two types of seminatural diet containing the phloem of pines, and a purely artificial diet containing five monoterpenes ((−)-α-pinene, (−)-β-pinene, (+)-3-carene, (±)-limonene, and turpentine oil) also caused differential transcript levels in the detoxification enzyme genes. The results suggest that monoterpenes enter the beetles through different routes (i.e., respiratory and digestive systems) and cause the expression of different genes in response, which might be involved in pheromone metabolism. In addition, the xenobiotic metabolism in bark beetles should be considered as a system comprising multiple detoxifying enzymes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jonas Hansen Kymre ◽  
XiaoLan Liu ◽  
Elena Ian ◽  
Christoffer Nerland Berge ◽  
GuiRong Wang ◽  
...  

The pheromone system of heliothine moths is an optimal model for studying principles underlying higher-order olfactory processing. In Helicoverpa armigera, three male-specific glomeruli receive input about three female-produced signals, the primary pheromone component, serving as an attractant, and two minor constituents, serving a dual function, i.e. attraction versus inhibition of attraction. From the antennal-lobe glomeruli, the information is conveyed to higher olfactory centers, including the lateral protocerebrum, via three main paths – of which the medial tract is the most prominent. In this study, we traced physiologically identified medial-tract projection neurons from each of the three male‑specific glomeruli with the aim of mapping their terminal branches in the lateral protocerebrum. Our data suggest that the neurons’ wide-spread projections are organized according to behavioral significance, including a spatial separation of signals representing attraction versus inhibition – however, with a unique capacity of switching behavioral consequence based on the amount of the minor components.


Author(s):  
Franziska Klapper ◽  
Sien Audoor ◽  
Wim Vyverman ◽  
Georg Pohnert

AbstractBenthic diatoms dominate primary production in marine subtidal and intertidal environments. Their extraordinary species diversity and ecological success is thought to be linked with their predominantly heterothallic sexual reproduction. Little is known about pheromone involvement during mating of pennate diatoms. Here we describe pheromone guided mating in the coastal raphid diatom Cylindrotheca closterium. We show that the two mating types (mt+ and mt−) have distinct functions. Similar to other benthic diatoms, mt+ cells are searching for the mt− cells to pair. To enhance mating efficiency mt− exudes an attraction pheromone which we proved by establishing a novel capillary assay. Further, two more pheromones produced by mt− promote the sexual events. One arrests the cell cycle progression of mt+ while the other induces gametogenesis of mt+. We suggest that C. closterium shares a functionally similar pheromone system with other pennate diatoms like Seminavis robusta and Pseudostaurosira trainorii which synchronize sexual events and mate attraction. Remarkably, we found no evidence of mt+ producing pheromones, which differentiates C. closterium from other pennates and suggests a less complex pheromone system in C. closterium.


Author(s):  
Jia Xing Fang ◽  
Hui Cong Du ◽  
Xia Shi ◽  
Su Fang Zhang ◽  
Fu Liu ◽  
...  

Hauser's engraver beetle Ips hauseri Reitter is a serious pest in spruce forest ecosystems in Central Asia. Its monoterpenoid signal production, transcriptome responses, and potential regulatory mechanisms remain poorly understood. The quality and quantity of volatile metabolites in hindgut extracts of I. hauseri were found to differ between males and females and among three groups: beetles that are newly emerged, those with a topical application of juvenile hormone III (JHIII), and those that have been feeding for 24 h. Feeding males definitively dominate monoterpenoid signal production in I. hauseri, which uses (4S)-(–)-ipsenol and (S)-(–)-cis-verbenol to implement reproductive segregation from I. typographus and I. shangrila. Feeding stimulation can induce higher expression of most genes related to the biosynthesis of (4S)-(–)-ipsenol than JHIII induction, and it shows a male-specific mode in I. hauseri. JHIII can stimulate males to produce large amounts of (–)-verbenone and also upregulates a higher expression of several CYP6 genes in males than females. The expression of genes involved in the metabolism of JHIII in females and males were found to be upregulated. A species-specific aggregation pheromone system for I. hauseri, consisting of (4S)-(–)-ipsenol and S-(–)-cis-verbenol, can be used to monitor population dynamics or mass trap killing. Our results also enable a better understanding of the bottom-up role of feeding behaviors in mediating population reproduction/aggregation and interspecific interactions.


2021 ◽  
Author(s):  
Franziska Klapper ◽  
Sien Audoor ◽  
Wim Vyverman ◽  
Georg Pohnert

Abstract Benthic diatoms dominate primary production in marine subtidal and intertidal environments. Their extraordinary species diversity and ecological success is thought to be linked with their motility and predominantly heterothallic sexual reproduction. Little is known about pheromone involvement during mating of pennate diatoms. Here we describe pheromone guided mating in the coastal raphid diatom Cylindrotheca closterium. We show that the two mating types (mt+ and mt¯) have distinct functions. Similar to other benthic diatoms, mt+ cells are searching for the mt¯ cells to pair. To enhance mating efficiency mt¯ exudes an attraction pheromone, which we proved by establishing a novel capillary assay. Further, two more pheromones produced by mt¯ promote the sexual events. One arrests the cell cycle progression of mt+ while the other induces gametogenesis of mt+. We suggest that C. closterium shares a functionally similar pheromone system with other pennate diatoms like Seminavis robusta and Pseudostaurosira trainorii which synchronize sexual events and mate attraction. Remarkably, we found no evidence of mt+ producing pheromones, which differentiates C. closterium from other pennates and suggests a less complex pheromone system in C. closterium.


2020 ◽  
Author(s):  
Jonas Hansen Kymre ◽  
XiaoLan Liu ◽  
Elena Ian ◽  
Christoffer Nerland Berge ◽  
XinCheng Zhao ◽  
...  

The pheromone system of heliothine moths is an optimal model for studying principles underlying higher-order olfactory processing. In Helicoverpa armigera, three male-specific glomeruli receive input about three female-produced signals, the primary pheromone component, serving as an attractant, and two minor constituents, serving a dual function, i.e. attraction versus inhibition of attraction. From the antennal-lobe glomeruli, the information is conveyed to higher olfactory centers, including the lateral protocerebrum, via three main paths - of which the medial tract is the most prominent. In this study, we traced physiologically identified medial-tract projection neurons from each of the three male specific glomeruli with the aim of mapping their terminal branches in the lateral protocerebrum. Our data suggest that the neurons' wide-spread projections are organized according to behavioral significance, including a spatial separation of signals representing attraction versus inhibition - however, with a unique capacity of switching behavioral consequence based on the amount of the minor components.


2020 ◽  
Author(s):  
Lucie Conchou ◽  
Philippe Lucas ◽  
Nina Deisig ◽  
Elodie Demondion ◽  
Michel Renou

AbstractOlfaction allows insects to communicate with pheromones even in complex olfactory landscapes. It is generally admitted that, due to the binding selectivity of the receptors, general odorants should weakly interfere with pheromone detection. However, laboratory studies show that volatile plant compounds (VPCs) modulate responses to the pheromone in male moths. We used extracellular electrophysiology and calcium imaging to measure the responses to the pheromone of receptor and central neurons in males Agrotis ipsilon while exposed to simple or composite backgrounds of VPCs. Maps of activities were built using calcium-imaging to visualize which areas in antennal lobes (ALs) were affected by VPCs. To mimic a natural olfactory landscape short pheromone puffs were delivered over VPC backgrounds. We chose a panel of VPCs with different chemical structures and physicochemical properties representative of the odorant variety encountered by a moth. We evaluated the intrinsic activity of each VPC and compared the impact of VPC backgrounds at antenna and antennal lobe levels. Then, we prepared binary, ternary and quaternary combinations to determine whether blend activity could be deduced from that of its components. Our data confirm that a VPC background interfere with the moth pheromone system in a dose-dependent manner. Interference with the neuronal coding of pheromone signal starts at the periphery. VPCs showed differences in their capacity to elicit Phe-ORN firing response that cannot be explained by differences in stimulus intensities because we adjusted the source concentrations to vapor pressures. Thus, these differences must be attributed to the selectivity of ORs or any other olfactory proteins. The neuronal network in the ALs, which reformats the ORN-input, did not improve pheromone salience. We postulate that the AL network might have evolved to increase sensitivity and encode for fast changes over a wide range of concentrations, possibly at some cost for selectivity. Comparing three- or four-component blends to binary blends or single compound indicated that a blend showed the activity of its most active compound. Thus, although the diversity of a background might increase the probability of including a VPC interacting with the pheromone system, chemical diversity does not seem to be a prominent factor per se. Global warming is significantly affecting plant metabolism so that the emissions of VPCs and resulting odorscapes are modified. Increase in atmospheric mixing rates of VPCs will change olfactory landscapes which, as confirmed in our study, might impact pheromone communication.


Author(s):  
Herve Thevenon

The key premise of translational studies is that knowledge gained in one animal species can be transposed to other animals. So far translational bridges have mainly relied on genetic and physiological similarities, in experimental setups where behaviours and environment are often oversimplified. These simplifications were recently criticised for decreasing the intrinsic value of the published results. The inclusion of wild behaviour and rich environments in neuroscience experimental designs is difficult to achieve because no animal model has it all. As an example, the genetic toolkit of moths species is virtually non-existent when compared to C. elegans, rats, mice, or zebrafish, however the balance is reversed for wild behaviours. The ethological knowledge gathered about the moth was instrumental for designing natural-like auditory stimuli, that were used in association with electrophysiology in order to understand how moths use these variable sounds produced by their predators in order to trump death. Conversely, we are still stuck with understanding how male moths make sense of their complex and diffuse olfactory landscape in order to locate conspecific females up to several hundred meters away, and precisely identify a conspecific in a sympatric swarm in order to reproduce. This systemic review articulates the ethological knowledge pertaining to this unresolved problem and leverages the paradigm to gain insight into how male moths process sparse and uncertain environmental sensory information.


2020 ◽  
pp. 105971232091893
Author(s):  
Seongin Na ◽  
Yiping Qiu ◽  
Ali E Turgut ◽  
Jiří Ulrich ◽  
Tomáš Krajník ◽  
...  

Pheromones are chemical substances released into the environment by an individual animal, which elicit stereotyped behaviours widely found across the animal kingdom. Inspired by the effective use of pheromones in social insects, pheromonal communication has been adopted to swarm robotics domain using diverse approaches such as alcohol, RFID tags and light. COSΦ is one of the light-based artificial pheromone systems which can emulate realistic pheromones and environment properties through the system. This article provides a significant improvement to the state-of-the-art by proposing a novel artificial pheromone system that simulates pheromones with environmental effects by adopting a model of spatio-temporal development of pheromone derived from a flow of fluid in nature. Using the proposed system, we investigated the collective behaviour of a robot swarm in a bio-inspired aggregation scenario, where robots aggregated on a circular pheromone cue with different environmental factors, that is, diffusion and pheromone shift. The results demonstrated the feasibility of the proposed pheromone system for use in swarm robotic applications.


Sign in / Sign up

Export Citation Format

Share Document