Monoterpenoid signals and their transcriptional responses to feeding and juvenile hormone regulations in bark beetle Ips hauseri Reitter

Author(s):  
Jia Xing Fang ◽  
Hui Cong Du ◽  
Xia Shi ◽  
Su Fang Zhang ◽  
Fu Liu ◽  
...  

Hauser's engraver beetle Ips hauseri Reitter is a serious pest in spruce forest ecosystems in Central Asia. Its monoterpenoid signal production, transcriptome responses, and potential regulatory mechanisms remain poorly understood. The quality and quantity of volatile metabolites in hindgut extracts of I. hauseri were found to differ between males and females and among three groups: beetles that are newly emerged, those with a topical application of juvenile hormone III (JHIII), and those that have been feeding for 24 h. Feeding males definitively dominate monoterpenoid signal production in I. hauseri, which uses (4S)-(–)-ipsenol and (S)-(–)-cis-verbenol to implement reproductive segregation from I. typographus and I. shangrila. Feeding stimulation can induce higher expression of most genes related to the biosynthesis of (4S)-(–)-ipsenol than JHIII induction, and it shows a male-specific mode in I. hauseri. JHIII can stimulate males to produce large amounts of (–)-verbenone and also upregulates a higher expression of several CYP6 genes in males than females. The expression of genes involved in the metabolism of JHIII in females and males were found to be upregulated. A species-specific aggregation pheromone system for I. hauseri, consisting of (4S)-(–)-ipsenol and S-(–)-cis-verbenol, can be used to monitor population dynamics or mass trap killing. Our results also enable a better understanding of the bottom-up role of feeding behaviors in mediating population reproduction/aggregation and interspecific interactions.

2013 ◽  
Author(s):  
Katharine L. Stuble ◽  
Courtney M. Patterson ◽  
Mariano A. Rodriguez-Cabal ◽  
Relena R. Ribbons ◽  
Robert R. Dunn ◽  
...  

Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of the eastern US. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed removal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed.


2017 ◽  
Author(s):  
Yang Zhang ◽  
Daniel W. Ngu ◽  
Daniel Carvalho ◽  
Zhikai Liang ◽  
Yumou Qiu ◽  
...  

AbstractCross-species comparisons of transcriptional regulation have the potential to identify functionally constrained transcriptional regulation and genes for which a change in transcriptional regulation correlates with a change in phenotype. Conventional differential gene expression analysis and a different approach based on identifying differentially regulated orthologs (DROs) are compared using paired time course gene expression data from two species which respond similarly to cold – maize (Zea mays) and sorghum (Sorghum bicolor). Both approaches suggest that, for genes conserved at syntenic positions for millions of years, the majority of cold responsive transcriptional regulation is species specific, although initial transcriptional responses to cold appear to be more conserved between the two species than later responses. In maize, the promoters of genes with both species specific and conserved transcriptional responses to cold tend to contain more micrococcal nuclease hypersensitive sites in their promoters, a proxy for open chromatin. However, genes with conserved patterns of transcriptional regulation between the two species show lower ratios of nonsynonymous to synonymous substitutions consistent with this population of genes experiencing stronger purifying selection. We hypothesize that cold responsive transcriptional regulation is a fast evolving and largely neutral molecular phenotype for the majority of genes in Andropogoneae, while a smaller core set of genes involved in perceiving and responding to cold stress are subject to functionally constrained cold responsive regulation.


Author(s):  
Р. Н. Мустафин ◽  
Э. К. Хуснутдинова

Одним из ключевых механизмов старения является изменение гормональной регуляции, для эффективного воздействия на которую с целью продления жизни необходимо определение первопричины данных процессов. В качестве молекулярных драйверов, управляющих динамикой уровня гормонов, могут служить транспозоны. Это связано с их использованием в качестве источников нуклеотидных последовательностей, воспринимающих специфические сигналы рибозимов, транскрипционных факторов, гормонов и их мессенджеров. В то же время, в эволюции транспозоны являются источниками рибозимов и белков, обладающих ДНК-связывающими доменами. Начиная с деления зиготы, видоспецифический состав и распределение транспозонов в геноме могут использоваться как биологическая кодировка, необходимая для последовательной и специфической для типов клеток экспрессии генов. Сделано предположение, что гормональная регуляция является одним из компонентов сложной системы управления онтогенезом под влиянием мобильных элементов. В качестве подтверждения приведены работы о роли транспозонов в управлении генами эндокринной системы, а также о влиянии гормонов на активность транспозонов. Исследование этих взаимосвязей может иметь перспективы для разработки методов продления жизни, так как эпигенетические изменения под влиянием транспозонов носят обратимый характер. Species-specific changes in the endocrine system are key factors in aging. Therefore, to prolong life, it is necessary to find regulators of the highest level, the changes of which lead to physiological aging. The molecular drivers that control dynamics of hormone levels can be transposons. This is due to the use of nucleotide sequences of transposons as binding sites that perceive specific signals of ribozymes, transcription factors, hormones and their messengers. At the same time, transposons are evolutionary sources of ribozymes and proteins that have DNA-binding domains. Starting from zygote division, the species-specific composition and distribution of transposons in the genome serves as a biological coding, which is necessary for the sequential expression of genes specific to cell types and stage of development. We suggest that hormonal regulation is one of the components of this complex system of regulation of ontogenesis under the control of transposons. To confirm our hypothesis, this review contains articles that prove the importance of transposons for species-specific control of endocrine system genes, as well as the effect of hormones on transposon activity. The research of these relationships is promising for the development of methods for the effective prolongation of life, since epigenetic changes under the influence of transposons are reversible.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 875
Author(s):  
Joana Sabino-Pinto ◽  
Daniel J. Goedbloed ◽  
Eugenia Sanchez ◽  
Till Czypionka ◽  
Arne W. Nolte ◽  
...  

Phenotypic plasticity and local adaptation via genetic change are two major mechanisms of response to dynamic environmental conditions. These mechanisms are not mutually exclusive, since genetic change can establish similar phenotypes to plasticity. This connection between both mechanisms raises the question of how much of the variation observed between species or populations is plastic and how much of it is genetic. In this study, we used a structured population of fire salamanders (Salamandra salamandra), in which two subpopulations differ in terms of physiology, genetics, mate-, and habitat preferences. Our goal was to identify candidate genes for differential habitat adaptation in this system, and to explore the degree of plasticity compared to local adaptation. We therefore performed a reciprocal transfer experiment of stream- and pond-originated salamander larvae and analyzed changes in morphology and transcriptomic profile (using species-specific microarrays). We observed that stream- and pond-originated individuals diverge in morphology and gene expression. For instance, pond-originated larvae have larger gills, likely to cope with oxygen-poor ponds. When transferred to streams, pond-originated larvae showed a high degree of plasticity, resembling the morphology and gene expression of stream-originated larvae (reversion); however the same was not found for stream-originated larvae when transferred to ponds, where the expression of genes related to reduction-oxidation processes was increased, possibly to cope with environmental stress. The lack of symmetrical responses between transplanted animals highlights the fact that the adaptations are not fully plastic and that some level of local adaptation has already occurred in this population. This study illuminates the process by which phenotypic plasticity allows local adaptation to new environments and its potential role in the pathway of incipient speciation.


2003 ◽  
Vol 84 (12) ◽  
pp. 3325-3336 ◽  
Author(s):  
Pilar Najarro ◽  
Han-Joo Lee ◽  
James Fox ◽  
James Pease ◽  
Geoffrey L. Smith

Yaba-like disease virus (YLDV) genes 7L and 145R are located on opposite ends of the genome and are predicted to encode 7-transmembrane proteins (7-TM) that share 53 and 44 % amino acid identity, respectively, to human CC chemokine receptor 8 (hCCR8). In this report, we demonstrate that early after infection with YLDV, cells acquire the ability to bind human CCL1. By expression of genes 7L and 145R in vaccinia virus, we demonstrated that each protein is glycosylated and is exposed on the cell surface with the N terminus outside the cell. Protein 7L, but not 145R, is able to bind hCCL1 (K d=0·6±0·13 nM) and couple to heterotrimeric G-proteins and to activate the extracellular signal-regulated kinases (ERK1/2). 7L binds several chemokines including the viral chemokines vMIPI and vMIPII and hCCL7/MCP3. This binding seems species-specific as 7L does not bind the murine orthologues of CCL1 and CCL7 in the assays used. This represents the first example of a poxviral 7-TM chemokine receptor that has functional interactions with a human chemokine.


2013 ◽  
Vol 45 (8) ◽  
pp. 321-331 ◽  
Author(s):  
Gretchen A. Meyer ◽  
Simon Schenk ◽  
Richard L. Lieber

In this work, the interaction between the loss of a primary component of the skeletal muscle cytoskeleton, desmin, and two common physiological stressors, acute mechanical injury and aging, were investigated at the transcriptional, protein, and whole muscle levels. The transcriptional response of desmin knockout ( des −/−) plantarflexors to a bout of 50 eccentric contractions (ECCs) showed substantial overlap with the response in wild-type ( wt) muscle. However, changes in the expression of genes involved in muscle response to injury were blunted in adult des −/− muscle compared with wt (fold change with ECC in des −/− and wt, respectively: Mybph, 1.4 and 2.9; Xirp1, 2.2 and 5.7; Csrp3, 1.8 and 4.3), similar to the observed blunted mechanical response (torque drop: des −/− 30.3% and wt 55.5%). Interestingly, in the absence of stressors, des −/− muscle exhibited elevated expression of many these genes compared with wt. The largest transcriptional changes were observed in the interaction between aging and the absence of desmin, including many genes related to slow fiber pathway (Myh7, Myl3, Atp2a2, and Casq2) and insulin sensitivity (Tlr4, Trib3, Pdk3, and Pdk4). Consistent with these transcriptional changes, adult des −/− muscle exhibited a significant fiber type shift from fast to slow isoforms of myosin heavy chain ( wt, 5.3% IIa and 71.7% IIb; des −/−, 8.4% IIa and 61.4% IIb) and a decreased insulin-stimulated glucose uptake ( wt, 0.188 μmol/g muscle/20 min; des −/−, 0.085 μmol/g muscle/20 min). This work points to novel areas of influence of this cytoskeletal protein and directs future work to elucidate its function.


Author(s):  
Paul Benjamin ◽  
Michael Crossley

It is conceptually reasonable to explore how the evolution of behavior involves changes in neural circuitry. Progress in determining this evolutionary relationship has been limited in neuroscience because of difficulties in identifying individual neurons that contribute to the evolutionary development of behaviors across species. However, the results from the feeding systems of gastropod mollusks provide evidence for this concept of co-evolution because the evolution of different types of feeding behaviors in this diverse group of mollusks is mirrored by species-specific changes in neural circuitry. The evolution of feeding behaviors involves changes in the motor actions that allow diverse food items to be acquired and ingested. The evolution in neural control accompanies this variation in food and the associated changes in flexibility of feeding behaviors. This is present in components of the feeding network that are involved in decision making, rhythm generation, and behavioral switching but is absent in background mechanisms that are conserved across species, such as those controlling arousal state. These findings show how evolutionary changes, even at the single neuron level, closely reflect the details of behavioral evolution.


2005 ◽  
Vol 138 (3) ◽  
pp. 1763-1773 ◽  
Author(s):  
Dominik D. Schmidt ◽  
Claudia Voelckel ◽  
Markus Hartl ◽  
Silvia Schmidt ◽  
Ian T. Baldwin

2020 ◽  
Vol 263 ◽  
pp. 114325 ◽  
Author(s):  
Elizabeth R. Jones ◽  
Danielle Simning ◽  
Jenifer Serafin ◽  
Maria S. Sepúlveda ◽  
Robert J. Griffitt

Sign in / Sign up

Export Citation Format

Share Document